choice (hac762) – HW Quest Week 8 – cepparo – (53850)103.f(z) =∞summationdisplayn=0(-1)n42nz2n5n+1correct4.f(z) =∞summationdisplayn=042nz2n5n+15.f(z) =∞summationdisplayn=0(-1)n4nzn5n+1Explanation:After simplification,f(z) =15 + 16z2=15parenleftbigg11 +165z2parenrightbigg=15parenleftbigg11-(-165z2)parenrightbigg.On the other hand,15∞summationdisplayn=0parenleftbigg-165z2parenrightbiggn=∞summationdisplayn=0(-1)n42nz2n5n+1keywords:02110.0pointsFind a power series representation centeredat the origin for the functionf(y) =y3(6-y)2.1.f(y) =∞summationdisplayn=3n-26n-1yncorrect2.f(y) =∞summationdisplayn=3n6nyn3.f(y) =∞summationdisplayn=216n-1yn4.f(y) =∞summationdisplayn=316n-3yn5.f(y) =∞summationdisplayn=2n-16nynExplanation:By the known result for geometric series,16-y=16parenleftBig1-y6parenrightBig=16∞summationdisplayn=0parenleftBigy6parenrightBign=∞summationdisplayn=016n+1yn.This series converges on (-6,6).On the other hand,1(6-y)2=ddyparenleftBig16-yparenrightBig,and so on (-6,6),1(6-y)2=ddyparenleftBigg∞summationdisplayn=0yn6n+1parenrightBigg=∞summationdisplayn=1n6n+1yn-1=∞summationdisplayn=0n+ 16n+2yn.Thusf(y) =y3∞summationdisplayn=0n+ 16n+2yn=∞summationdisplayn=0n+ 16n+2yn+3.Consequently,f(y) =∞summationdisplayn=3n-26n-1yn.02210.0pointsFind a power series representation for thefunctionf(x) = tan-1(2x).1.f(x) =∞summationdisplayn=012n+ 1x2n+12.f(x) =∞summationdisplayn=022n+12n+ 1x2n+1