Variable
Eq.
z
x
1
x
2
x
3
x
4
x
5
x
6
RHS
z
(0)
1
0
(16/30)M+11/30
(11/3)M-4/3
0
M
0
2.1M
3.6
x
1
(1)
0
1
1/3
10/3
0
0
0
9
x
4
(2)
0
0
1/3
5/3
1
0
0
1.5
x
6
(3)
0
0
0.2
2
0
1
1
0.6

artificial variable
x
6
已變為
nonbasic variable,
所以這一行可不計算
Basic
coeff of
Variable
Eq.
z
x
1
x
2
x
3
x
4
x
5
x
6
RHS
z
1
0
0
(5/3)M+7/3
0
(5/3)M+11/6
(8/3)M
11/6
0.5M
4.7
x
1
(1)
0
1
0
20/3
0
5/3
-5/3
8
x
4
(2)
0
0
0
5/3
1
5/3
-5/3
0.5
x
2
(3)
0
0
1
-10
0
-5
5
3
Optimal solution: (
x
1
,
x
2
) = ( 7.5, 4.5 )
Basic
coeff.
of
Variable
Eq.
z
x
1
x
2
x
3
x
4
x
5
RHS
z
(0)
1
0
0
0.5
M
–
1.1
0
5.25
x
1
(1)
0
1
0
5
1
0
7.5
x
5
(2)
0
0
0
1
0.6
1
0.3
x
2
(3)
0
0
1
5
3
0
4.5


No feasible solution exists in the following example.
Minimize
z
= 0.4
x
1
+ 0.5
x
2
subject to
0.3
x
1
+ 0.1
x
2
≦
1.8
0.5
x
1
+ 0.5
x
2
= 6
0.6
x
1
+ 0.4
x
2
≧
6
,
x
1
≧
0,
x
2
≧
0
0.3
x
1
+ 0.1
x
2
≦
2.7
is replaced by
0.3
x
1
+ 0.1
x
2
≦
1.8
0.3
x
1
+ 0.1
x
2
≦
1.8

Minimize
z
= 0.4
x
1
+ 0.5
x
2
subject to
0.3
x
1
+ 0.1
x
2
≦
1.8
0.5
x
1
+ 0.5
x
2
= 6
0.6
x
1
+ 0.4
x
2
≧
6
,
x
1
≧
0,
x
2
≧
0
Minimize
z
= 0.4
x
1
+ 0.5
x
2
+ M
x
4
subject to
0.3
x
1
+ 0.1
x
2
+
x
3
= 1.8
0.5
x
1
+ 0.5
x
2
+
x
4
= 6
0.6
x
+ 0.4
x
-
x
= 6
1
2
5
x
1
≧
0,
x
2
≧
0,
x
3
≧
0,
x
4
≧
0,
x
5
≧
0.
Minimize
z
= 0.4
x
1
+ 0.5
x
2
+ M
x
4
+ M
x
6
subject to
0.3
x
1
+ 0.1
x
2
+
x
3
= 1.8
0.5
x
1
+ 0.5
x
2
+
x
4
= 6
0.6
x
1
+ 0.4
x
2
x
5
+
x
6
= 6
x
1
≧
0,
x
2
≧
0,
x
3
≧
0,
x
4
≧
0,
x
5
≧
0,
x
6
≧
0.
x
3
:
slack variable
x
4
: artificial variable
x
5
: surplus variable

Complete set of tableau (using Big-M Method):
Basic
coeff
of
Variable
Eq.
z
x
1
x
2
x
3
x
4
x
5
x
6
RHS
z
(0)
-1
-1.1M+0.4
-0.9M+0.5
0
0
M
0
-12M
x
3
(1)
0
0.3
0.1
1
0
0
0
1.8
x
4
(2)
0
0.5
0.5
0
1
0
0
6
x
6
(3)
0
0.6
0.4
0
0
1
1
6
Basic
coeff
of
Variable
Eq.
z
x
1
x
2
x
3
x
4
x
5
x
6
RHS
z
(0)
-1
0
-(16/30)M+11/3
0
(11/3)M-4/3
0
M
0
-5.4M-2.4
x
1
(1)
0
1
1/3
10/3
0
0
0
6
x
4
(2)
0
0
1/3
5/3
1
0
0
3
x
6
(3)
0
0
0.2
2
0
1
1
2.4
maximize -
z

Basic
coeff
of
Variable
Eq.
z
x
1
x
2
x
3
x
4
x
5
x
6
RHS
z
(0)
1
0
0
M+0.5
1.6M-1.1
M
0
-0.6M-5.7
x
1
(1)
0
1
0
5
1
0
0
3
x
2
(2)
0
0
1
5
3
0
0
9
這一行可不計算
There exists
no feasible solution.
( In the
optimal tableau
, the artificial variable
x
6
is not 0.)
x
6
(3)
0
0
0
1
0.6
1
1
0.6

Solve the
Big-M Problem
Optimal
Optimal is
is finite
unbounded
X
a
* = 0. Optimal
solution is
founded.
X
a
* not 0. No
feasible solution
X
a
* = 0. Optimal
solution is
unbounded.
X
a
* not 0. No
feasible solution

The Two-phase method:
Minimize
z
= 0.4
x
1
+ 0.5
x
2
subject to
0.3
x
1
+ 0.1
x
2
≦
2.7
0.5
x
1
+ 0.5
x
2
= 6
0.6
x
1
+ 0.4
x
2
≧
6,
x
1
≧
0,
x
2
≧
0
Phase 1: Solve
The Two-phase method for the Radiation Therapy Example:
Minimize
z
=
x
4
+
x
6
subject to
0.3
x
1
+ 0.1
x
2
+
x
3
= 2.7
0.5
x
1
+ 0.5
x
2
+
x
4
= 6
0.6
x
1
+ 0.4
x
2
x
5
+
x
6
= 6
x
1
≧
0,
x
2
≧
0,
x
3
≧
0,
x
4
≧
0,
x
5
≧
0,
x
6
≧
0.
( There exists a feasible solution if and only if the optimal value of the phase 1
problem is 0, i.e.
x
4
=
x
6
= 0. )

( Minimize
z
or maximize
-z
)
z
1.1
x
1
0.9
x
2
+
x
5
=
12
0.3
x
1
+ 0.1
x
2
+
x
3
= 2.7
0.5
x
1
+ 0.5
x
2
+
x
4
=
6
0.6
x
1
+ 0.4
x
2
x
5
+
x
6
=
6
x
1
≧
0,
x
2
≧
0,
x
3
≧
0,
x
4
≧
0,
x
5
≧
0,
x
6
≧
0.
Basic
coeff.
of
Variable
Eq.
z
x
1
x
2
x
3
x
4
x
5
x
6
RHS
z
(0)
1
1.1
0.9
0
0
1
0
12
x
3
(1)
0
0.3
0.1
1
0
0
0
2.7
x
4
(2)
0
0.5
0.5
0
1
0
0
6
x
6
(3)
0
0.6
0.4
0
0
1
1
6
maximize
-z

Basic
coeff.
of
Variable
Eq.
z
x
1
x
2
x
3
x
4
x
5
x
6
RHS
z
(0)
1
0
16/30
11/3
0
1
0
2.1
x
1
(1)
0
1
1/3
10/3
0
0
0
9
x
4
(2)
0
0
1/3
5/3
1
0
0
1.5
x
6
(3)
0
0
0.2
2
0
1
1
0.6
Basic
coeff.
of
Variable
Eq.
z
x
1
x
2
x
3
x
4
x
5
x
6
RHS
z
(0)
1
0
0
5/3
0
5/3
8/3
0.5
x
1
(1)
0
1
0
20/3
0
5/3
5/3
8
x
4
(2)
0
0
0
5/3
1
5/3
5/3
0.5
x
2
(3)
0
0
1
10
0
-5
5
3
這一行可不計算

Basic
coeff.
of
Variable
Eq.
z
x
1
x
2
x
3
x
4
x
5
RHS
z
(0)
1
0
0
0
1
0
0
x
1
(1)
0
1
0
0
4
5
6
x
3
(2)
0
0
0
1
3/5
1
0.3
x
2
(3)
0
0
1
0
6
5
6
這一行可不計算
x
1
5
x
5
= 6
x
3
+
x
5
= 0.3
x
2
+
5
x
5
= 6
x
1
≧
0,
x
2
≧
0,


You've reached the end of your free preview.
Want to read all 121 pages?
- Fall '11
- Chen
- Linear Programming, Optimization, X1, CPF