MidtermReviewPacketKey

# 15 all the angles of an equilateral triangle are

This preview shows pages 10–14. Sign up to view the full content.

15. All the angles of an equilateral triangle are congruent. 16. The complement and supplement of an angle differ by 90 o . 17. The sum of the lengths of two sides of a triangle minus the length of the third side is a positive number. PART 5 : Complete each of the following statements by filling in the blanks: 1. A(n) ________________________ is drawn from a vertex of a triangle to the midpoint of the opposite side. 2. A(n) _________________________ is drawn from a vertex of a triangle perpendicular to the opposite side. 3. The contrapositive of conditional statement a b : is ___________. 4. Perpendicular lines have _____________ intersection point(s). 5. Supplementary angles sum to ___________________. 6. Acute angles have measures between ________________________.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Midterm Review – Answer Key Part 1 : 1.) FD uuur 2.) FB uuur and FC uuur 3.) No 4.) Yes 5.) 4 < BF < 20 6.) BFD DFE EFC 2245∠ 2245∠ 7.) 88 o m BAC = 8.) Yes 9.) No 10.) No 11.) Point F 12.) EFC 13.) No solution 14.) BC uuur 15.) ABC V 16.) No 17a.) 105 o 4’ 0” 17b.) 97 o 32’ 45” 18.) 3 63 o m ∠ = 19a.) 150 o 19b.) 45 o 19c.) 140 o 20.) 2 < x < 8 21.) Converse : If two angles are congruent, then they are straight. (False) Inverse : If two angles are not straight, then they are not congruent. (False) Contrapositive : If two angles are not congruent, then they are not straight. (True) 22.) Contrapositive 23.) Comp. = 35 o 24.) Smaller angle = 36 o 25.) Angle = 20 o ; Comp. = 70 o ; Supp. = 160 o 26.) 139 o m APD = 27.) 8 17.5 x < < 28.) x = 26; y = 6 29a.) Acute 29b.) ; ; EC DC DE 30.) 140 o m MAB = 31a.) Scalene 31b.) ; ; C A B 32.) AC = 27 33a.) Yes 33b.) No 33c.) No 33d.) Yes 33e.) No 34.) 51 o m PMQ = 35.) No (Same-side interior angles are not supplementary!) 36.) We are given , , , O OB OF AB CD 2245 e and . EF CD Since all radii of a circle are congruent, . OA OE 2245 Since AB CD and , EF CD ABO and EFO are right. Since ABO and EFO are both right, . ABO EFO 2245∠ By HL, . ABO EFO 2245 V V By CPCTC, . AB EF 2245
37.) S1 : . WX VX 2245 R1 : Given. S2 : . WY VZ 2245 R2 : Given. S3 : . XY XZ 2245 R3 : 2245 segments + 2245 segments 2245 segments. S4 : . X X 2245∠ R4 : Reflexive Property. S5 : . XYV XZW 2245 V V R5 : SAS. S6 : . Y Z 2245∠ R6 : CPCTC. 38.) S1 : . PR ST 2245 R1 : Given. S2 : . NP VT 2245 R2 : Given. S3 : . P T 2245∠ R3 : Given. S4 : . PS TR 2245 R4 : 2245 segments + same segment 2245 segments. S5 : . NPS VTR 2245 V V R5 : SAS. S6 : . N V 2245∠ R6 : CPCTC. 39.) Sometimes 40.) Always 41.) Never 42.) Never 43.) Always 44.) 5 , 2 12 - ÷ 45.) (20, -13) 46.) 3 n = ± 47a.) (4, 1) 47b.) 2 7 47c.) 4 5 47d.) No 48.) x = 132 o 49.) S1 : WXYZ is a parallelogram. R1 : Given. S2 : . QZ PX 2245 R2 : Given. S3 : . WX YZ 2245 R3 : Opposite sides of a parallelogram are congruent. S4 : // . WX YZ R4 : Opposite sides of a parallelogram are parallel. S5 : . WXP YZQ 2245∠ R5 : // lines alt. int. angles are congruent. S6 : . WXP YZQ 2245 V V R6 : SAS. S7 : . WPX YQZ 2245∠ R7 : CPCTC. S8 : // . WP QY R8 : Alt. int. angles are congruent // lines. 50.) S1 : ABDF is a parallelogram. R1 : Given.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
S2 : 1 2. ∠ 2245∠ R2 : Given. S3 : . AB DF 2245 R3 : Opposite sides of a parallelogram are congruent. S4 : . B F 2245∠ R4 : Opposite angles of a parallelogram are congruent. S5 : . ABC DFG 2245 V V R5 : ASA.
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern