Xmimomomn36mnmspace

This preview shows page 4 - 6 out of 14 pages.

;</mo><mi>N</mi><mi>M</mi><mi>O</mi><mo>&#xA0; </mo><mo>=</mo><mo>&#xA0;</mo><mn>2</mn><mi >x</mi><mo>+</mo><mn>36</mn><mspace linebreak="newline"></mspace><mspace linebreak="newline"></mspace><mi>Solve</mi><mo> 0;</mo><mi>for</mi><mo>&#xA0;</mo><mi>x</mi><mo >&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mi>find </mi><mo>&#xA0;</mo><mi>m</mi><mo>&#x2220;</mo ><mi>L</mi><mi>M</mi><mi>N</mi><mo>.</mo><msp ace linebreak="newline"></mspace><mspace linebreak="newline"></mspace></math>"} Given: MO−→− bisects ∠LMN m∠LMO = 6x−20 m∠NMO = 2x+36 Solve for x and find m∠LMN. The diagram is not to scale.
Question options: ∠LMN = 64 {"version":"1.1","math":"<math ww.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>14</mn><mo>,</mo><mo>&#xA0;< /mo><mi>L</mi><mi>M</mi><mi>N</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn ∠LMN = 58 {"version":"1.1","math":"<math ww.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>13</mn><mo>,</mo><mo>&#xA0;< /mo><mi>L</mi><mi>M</mi><mi>N</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn ∠LMN = 116 {"version":"1.1","math":"<math ww.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>13</mn><mo>,</mo><mo>&#xA0;< /mo><mi>L</mi><mi>M</mi><mi>N</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn ∠LMN = 128 {"version":"1.1","math":"<math ww.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>14</mn><mo>,</mo><mo>&#xA0;< /mo><mi>L</mi><mi>M</mi><mi>N</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn What is the name of te ray that is opposite ?

You've reached the end of your free preview.

Want to read all 14 pages?

• Fall '18
• Karen O'Connor
• miles, Intersection, Question options

What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern