ex3ipotential of terrestrial gravitation end for i1168 sixci6cxphiyphiiri2

Ex3ipotential of terrestrial gravitation end for

This preview shows page 10 - 13 out of 14 pages.

uph(i)=mubyr(i).*ex3(i);%potential of terrestrial gravitation end for i=1:168 sixc(i)=6*c*((xphiyphi(i))/(r(i).^2)); fiftc(i)=15*c*((xphyphs(i))/(r(i).^4)); trc(i)=3*c*(r(i).^2); mubyrq(i)=(-mu./(r(i).^3)); fact1(i)=(1-trc(i)+fiftc(i)-sixc(i)); end for i=1:168 exyz(i)=(xxx(i).*fact1(i)); eyz(i)=(yyy(i).*fact1(i)); ezz(i)=(zzz(i).*fact1(i)); end ln=length(yyy); nc=ones(size(yyy)); TBG=[cos(phi);sin(phi);0]; %agx=zeros(1,168); tg=[TBG:ones(4,168)]; for i=1:168 agx(i)=tg.*mubyrq(i).*exyz(i); agy(i)=mubyrq(i).*eyz(i).*tg; agz(i)=mubyrq(i).*ezz(i).*tg; end AGX=agx'; AGY=agy'; AGZ=agz'; AG=sqrt(AGX.^2+AGY.^2+AGZ.^2);%accn.vector component in T.C.S. stipulated by terrestrial gravitation %-------------------------------------------------------------------------------------------------------------------------------------------------------- %calculation of acceleration component stipulated by inertia centrifugal force %algorithm for i=1:168 sicos(i)=(1-(xphiyphi(i))/(r(i).^2)); end for i=1:168 c(i)=0.5*(omegae.^2).*(r(i).^2-xphiyphi(i));%potential corresponding to inertia end for i=1:168 acx(i)=(omegae.^2.*(xxx(i)-xphiyphi(i)).*tg); acy(i)=(omegae.^2.*(yyy(i)-xphiyphi(i)).*tg); acz(i)=(omegae.^2.*(zzz(i)-xphiyphi(i)).*tg); end ACX=acx'; ACY=acy'; ACZ=acz'; AC=sqrt(ACX.^2+ACY.^2+ACZ.^2);
International Journal of Innovative Research in Advanced Engineering (IJIRAE) ISSN: 2349-2163 Volume 1 Issue 12 (December 2014 ) __________________________________________________________________________________________________________ © 2014, IJIRAE- All Rights Reserved Page -21 %------------------------------------------------------------------------------------------------------------------------------------------------------------- -------------- A1n1=a1X(:,1);%VX A1n2=a1Y(:,1);%VY %A1n3=a1Z(:,3);%VZ A1=sqrt(A1n1.^2+A1n2.^2); %A1--THE FIRST POLYNOMIAL COEFFICIENTS AND VELOCITY COMPONENTS %-------------------------------------------------------------------------------------------------------------------------------------------------- nf=ones(size(as)); TMG=[nf nf -as;nf nf sa;as -sa nf]; om=[omegae:ones(2,168)]; tm=[TMG:ones(4,168)]; for i=1:168 omega=om.*tm; end for i=1:168 akx(i)=2*om.*a1X(i); end for i=1:168 aky(i)=2*om.*a1Y(i); %akz(i)=2*omega(i).*A1n3; end AKX=akx'; AKY=aky'; %AKZ=akz'; for i=1:168 AK(i)=sqrt(AKX(i).^2+AKY(i).^2); end %AK IS THE ACCN . COMPONENT STIPULATED BY CORIOLIS FORCE %------------------------------------------------------------------------------------------------------------------------- for i=1:168 AF(i)=sqrt(AG(i).^2+AC(i).^2+AK(i).^2); end a1x=AF(:,1);%X-ACCN a1y=AF(:,2);%Y-ACCN a1z=AF(:,3);%Z-ACCN A1X=a1x'; A1Y=a1y'; A1Z=a1z'; %---------------------------------------------------------------------------------------------------------------------------- %velocity components %for i=1:168 % Vx=diff(A1X); % Vy=diff(A1Y); % Vz=diff(A1Z); %THE SECOND POLYNOMIAL COEFFICIENTS for i=1:168 A2(i)=0.5*AF(i); end a2x=A2(:,1); a2y=A2(:,2); a2z=A2(:,3); %--------------------------------------------------------------------------------------------------------------------- %THE THIRD POLYNOMIAL COEFFICIENTS %for i=1:168 A3=(1/16).*diff(AF); %end a3x=A3(:,1); a3y=A3(:,2);
International Journal of Innovative Research in Advanced Engineering (IJIRAE) ISSN: 2349-2163 Volume 1 Issue 12 (December 2014 ) __________________________________________________________________________________________________________ © 2014, IJIRAE- All Rights Reserved Page -22 a3z=A3(:,3); %---------------------------------------------------------------------------------------------------------------------------- %THE FOURTH POLYNOMIAL COEFFICIENTS %for i=1:7 A4=(1/24).*6.*diff(A3); %end a4x=A4(:,1); a4y=A4(:,2); a4z=A4(:,3); %Aon1=aoN(:,1); %Aon2=aoN(:,2); %Aon3=aoN(:,3); %--------------------------------- %ALGORITHM OF AO LOCATION HEIGHT H,AS AO LOCATION CO-ORDINATES FUNCTION ao for i=1:5 rt(i)=sqrt((aoX(i)+bx(i)).^2+(aoY(i)+by(i)).^2); end for i=1:5 rz=Req.*(1-(cz.*cf.*sf)); H(i)=rt(i)-rz; end if(H<=Hatm) pr=1; else pr=2; end XX=min(aoX):(mean(aoX)/11):max(aoX); YY=min(aoY):(mean(aoY)/11):max(aoY); ZZ=min(aoZ):(mean(aoZ)/11):max(aoZ); VVX=min(a1X):(mean(a1X)/11):max(a1X); VVY=min(a1Y):(mean(a1Y)/11):max(a1Y); VVZ=min(a1Z):(mean(a1Z)/11):max(a1Z); %conversion from ecef to geographic lam=77; phi=12; beta=pi/180; hs=100024.207503066; HS=hs.*[cos(lam*beta)*cos(phi*beta);sin(lam*beta)*cos(phi*beta);sin(phi*beta)]; TEG=[-cos(lam*beta)*sin(phi*beta)-sin(lam*beta)*sin(phi*beta)cos(phi*beta);sin(lam*beta)-cos(lam*beta) 0;cos(lam*beta)*cos(phi*beta) sin(lam*beta)*cos(phi*beta) sin(phi*beta)]; a=6378.137; eps=0.08181919; q=tan(phi*beta); del=atan(q)./(1+(eps.^2)); rs=a/sqrt(1+eps.^2).*sin(del*beta).*sin(del*beta);

You've reached the end of your free preview.

Want to read all 14 pages?

• Spring '14
• Coefficient, ISSN, Degree of a polynomial, International Journal of Innovative Research