C θ v c v remark 1351 it would be an interesting

This preview shows page 232 - 236 out of 250 pages.

c(ΘV) =c(V).Remark 13.5.1.It would be an interesting problem to compare the classch(F) with the homology Chern character ofFas defined in [140] (seealso [100]).
References1.M. Abate,The residual index and the dynamics of holomorphic maps tangentto the identity, Duke Math. J.107(2001) 173–207.2.M. Abate, F. Bracci and F. Tovena,Index theorems for holomorphic self-maps,Ann. of Math.159(2004) 819–864.3.M. Abate, F. Bracci and F. Tovena,Index theorems for holomorphic maps andfoliations, math.CV/06016024.R. Abraham and J. Robin,Transversal mappings and flows, W.A. Benjamin,Inc., 1967.5.N. A’Campo,Structures de pseudovari´et´e sur les espaces analytiques complexes,in Intersection Homology, A. Borel et al. Progress in Mathematics, Vol. 50,Birkha¨user, Boston, Inc. 1984, 41–45.6.M. Aguilar, J. Seade and A. Verjovsky,Indices of vector fields and topologicalinvariants of real analytic singularities, Crelle’s, J. Reine u. Ange. Math.504(1998), 159–176.7.Aleksandrov, A.G. The index of vector fields and logarithmic differential forms.Funct. Anal. Appl. 39, No. 4, 245–255 (2005).8.P. Aluffi,Chern classes for singular hypersurfaces, Trans. Amer. Math. Soc.351(1999), 3989–4026.9.V. I. Arnold,Index of a singular point of a vector field, the Petrovskii-Oleinikinequality and Mixed Hodge structures, Funct. Anal. Appl.12(1978), 1–14.10.V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko,Singularities of Differ-entiable Maps, Volume I, Birkh¨auser, 1985 (Translated from Russian).11.M. Atiyah and F. Hirzebruch,Analytic cycles on complex manifolds, Topology,1(1961), 25–45.12.M. Atiyah and F. Hirzebruch,The Riemann-Roch for analytic embeddings,Topology1(1962), 151–166.13.P. Baum and R. Bott,On the zeroes of meromorphic vector-fields, Essays onTopology and Related Topics, Springer-Verlag, New York, Heidelberg, Berlin,29–47, 1970.14.P. Baum and R. Bott,Singularities of holomorphic foliationsJ. DifferentialGeom.7(1972), 279–342.15.P. Baum, W. Fulton and R. MacPherson,Riemann-Roch for singular varieties,Publ. Math. IHES45(1975), 101–145.16.Ch. Bonatti and X. G´omez-Mont,The index of a holomorphic vector field on asingular variety, Ast´erisque 222 (1994), 9–35.17.H.-C. Graf von Bothmer, W. Ebeling and X. G´omez-Mont,An algebraic formulafor the index of a vector field on an isolated complete intersection singularity,Ann. Inst. Fourier (Grenoble) 58 (2008), no. 5, 1761–1783.18.R. Bott,The stable homotopy of the classical groups, Proc. Nat. Acad. Sci.13(1957), 933–935.215
216References19.R. Bott,Lectures on characteristic classes and foliations, in “Lectures onAlgebraicandDifferentialTopology”,LectureNotesinMathematics279Springer-Verlag 1972, 1–94.20.R. Bott and L. Tu,Differential Forms in Algebraic Topology, Graduate Texts inMathematics 82, Springer-Verlag, New York, Heidelberg, Berlin, 1982.21.F. Bracci,The dynamics of holomorphic maps near curves of fixed points, Ann.Sc. Norm. Super. Pisa Cl. Sci.2(2003), 493–520.22.F. Bracci and T. Suwa,Residues for singular pairs and dynamics of biholomor-phic maps of singular surfaces, Intern. J. Math.15(2004), 443–466.23.F. Bracci and T. Suwa,Residues for holomorphic foliations of singular pairs,Advances in Geom.5(2005), 81–95.24.F. Bracci and F. Tovena,Residual indices of holomorphic maps relative to sin-gular curves of fixed points on surfaces, Math. Z.242(2002), 481–490.25.

Upload your study docs or become a

Course Hero member to access this document

Upload your study docs or become a

Course Hero member to access this document

End of preview. Want to read all 250 pages?

Upload your study docs or become a

Course Hero member to access this document

Term
Fall
Professor
RachelEpstein
Tags
Metamorphoses, Manifold, Schwartz Index

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture