{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Simetria fn θ gn se e somente se gn θ fn e as nota

Info iconThis preview shows pages 21–27. Sign up to view the full content.

View Full Document Right Arrow Icon
Simetria f(n) =  Θ (g(n)) se e somente se g(n) =  Θ (f(n)) ... e as nota çõ es O,  , o e  ϖ ?
Background image of page 21

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Compara çã o de fun çõ es Simetria de transposi çã o f(n) = O(g(n)) se e somente se g(n) =  (f(n)) f(n) = o(g(n)) se e somente se g(n) =  ϖ (f(n)) Dados n ú meros reais a e b  é  poss í vel fazer as analogias f(n) =  Θ (g(n)) a = b f(n) = O(g(n))   b f(n) =  (g(n))   b f(n) = o(g(n))  a < b f(n) =  ϖ (g(n))  a > b
Background image of page 22
Compara çã o de fun çõ es f(n)  é  assintoticamente menor que g(n) se f(n) = o(g(n)) f(n)  é  assintoticamente maior que g(n) se f(n) =  ϖ (g(n)) Tricotomia: dados reais a e b, ent ã o: a < b; ou a = b; ou a > b. Nem sempre duas fun çõ es f(n) e g(n) s ã o assintoticamente compar á veis Nem f(n) = O(g(n)) e nem f(n) =  (g(n)) Exemplo: f(n) = n e g(n) = n 1+sen(n)
Background image of page 23

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Nota çõ es padr ã o e fun çõ es comuns Monotonicidade Pisos e tetos Aritm é tica modular Polin ô mios Exponenciais Logaritmos Fatoriais Itera çã o funcional Fun çã o logaritmo repetido N ú meros de Fibonacci
Background image of page 24
Somat ó rios – Ap ê ndice A F ó rmulas e propriedades de somat ó rios Linearidade S é rie aritm é tica Soma de quadrados e cubos S é rie geom é trica S é rie harm ô nica Integra çã o e diferencia çã o de s é ries Como inserir s é ries Produtos
Background image of page 25

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Somat ó rios – Ap ê ndice A Como limitar somat ó rios Indu çã o matem á tica Limitando os termos Divis ã o de somat ó rios Aproxima çã o por integrais
Background image of page 26
Exerc í cios Cap í tulo 3 3.1-1 a 3.1-8 3.2-1 a 3.2.3 e 3.2.6 Problemas 3-1 ao 3-4 Ap ê ndice A A.1-1 a A.1-3, A.1-6 e A.1-7 A.2-1 a A.2-5 Problema A-1
Background image of page 27
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}