In ho y s sang j ro ym et al eds advances in

This preview shows page 20 - 22 out of 22 pages.

sence applications. In: Ho Y-S, Sang J, Ro YM, et al. (eds) Advances in multimedia information processing— PCM 2015 . Berlin: Springer International Publishing, 2015, pp.442–452. 80. Kim H, Pabst S, Sneddon J, et al. Multi-modal big-data management for film production. In: 2015 international conference on image processing (ICIP) , Quebec City, QC, Canada, 27–30 September 2015, pp.4833–4837. New York: IEEE. 20 International Journal of Distributed Sensor Networks
81. Weinland D, Ronfard R and Boyer E. A survey of vision- based methods for action representation, segmentation and recognition. Comput Vis Image Und 2011; 115(2): 224–241. 82. Soro S and Heinzelman W. A survey of visual sensor net- works. Adv Multimedia 2009; 2009: 1–22. 83. Fosty B, Crispim-Junior CF, Badie J, et al. Event recog- nition system for older people monitoring using an RGB- D camera. In: ASROB-workshop on assistance and service robotics in a human environment , 2013, . inria.fr/members/Francois.Bremond/Postscript/baptiste- ASROB2013.pdf 84. Xia L, Chen CC and Aggarwal J. View invariant human action recognition using histograms of 3D joints. In: 2012 IEEE computer society conference on computer vision and pattern recognition workshops (CVPRW) , 2012, pp.20–27. IEEE, Xia_HAU3D12.pdf 85. Shotton J, Sharp T, Kipman A, et al. Real-time human pose recognition in parts from single depth images. Com- mun ACM 2013; 56(1): 116–124. 86. Romdhane R, Boulay B, Bremond F, et al. Probabilistic recognition of complex event. In: Crowley JL, Draper BA and Thonnat M (eds) Computer vision systems . Berlin and Heidelberg: Springer, 2011, pp.122–131. 87. Foroughi H, Naseri A, Saberi A, et al. An eigenspace- based approach for human fall detection using integrated time motion image and neural network. In: 9th interna- tional conference on signal processing, ICSP , Beijing, China, 26–29 October 2008, pp.1499–1503. New York: IEEE. 88. Chen D, Bharucha AJ and Wactlar HD. Intelligent video monitoring to improve safety of older persons. Conf Proc IEEE Eng Med Biol Soc 2007; 2007: 3814–3817. 89. Zaidenberg S, Boulay B and Bremond F. A generic framework for video understanding applied to group behavior recognition. In: 2012 IEEE ninth international conference on advanced video and signal-based surveillance (AVSS) , 2012, pp.136–142, - 00702179/file/avss.pdf 90. Cupillard F, Bremond F and Thonnat M. Behaviour rec- ognition for individuals, groups of people and crowd, 2003, =1300131&url=http%3A%2F%2Fieeexplore.ieee.org%2 Fiel5%2F9108%2F28886%2F01300131.pdf%3Farnumber %3D1300131 91. Nievas EB, Suarez OD, Garcia GB, et al. Violence detec- tion in video using computer vision techniques. In: Real P, Diaz-Pernil D, Molina-Abril H, et al. (eds) Computer analysis of images and patterns . Berlin and Heidelberg: Springer, 2011, pp.332–339. 92. Direkolu C and O’Connor NE. Team activity recognition in sports. In: Fitzgibbon A, Lazebnik S, Perona P, et al. (eds) Computer vision—ECCV 2012 . Berlin and Heidel- berg: Springer, 2012, pp.69–83. 93. Sadanand S and Corso JJ. Action bank: a high-level rep- resentation of activity in video. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR) , Pro- vidence, RI, 16–21 June 2012, pp.1234–1241. New York: IEEE.

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture