95
3.3.2
Density Functional Theory Methods
. . . . . . . . . . . . . . . . .
96
3.3.3
The Valence Electron Method
. . . . . . . . . . . . . . . . . . . . .
97
3.3.4
Dropping Multicenter Integrals
. . . . . . . . . . . . . . . . . . . . .
98
3.4
Full Range Process Potentials
. . . . . . . . . . . . . . . . . . . . . . . . . . .
99
3.4.1
The Three-Body Internuclear Coordinates
. . . . . . . . . . . . .
99
3.4.2
Global Formulation of the Potential Energy Surface
. . . . .
100
3.4.3
Local and Mobile Methods
. . . . . . . . . . . . . . . . . . . . . . . .
102
3.4.4
Process-Driven Local and Mobile Fitting Methods
. . . . . . .
104
xiv
Contents

3.5
Problems
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
107
3.5.1
Qualitative Problems
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
107
3.5.2
Quantitative Problems
. . . . . . . . . . . . . . . . . . . . . . . . . . .
108
4
The Treatment of Few-Body Reactions
. . . . . . . . . . . . . . . . . . . . . . .
111
4.1
The Combined Dynamics of Electrons and Nuclei
. . . . . . . . . . . .
111
4.1.1
The N-Body Dynamical Equations
. . . . . . . . . . . . . . . . . .
111
4.1.2
A Direct Integration of the General Equations
. . . . . . . . . .
113
4.1.3
The Born
–
Oppenheimer Approximation
. . . . . . . . . . . . . .
114
4.2
Three-Atom Systems
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
116
4.2.1
Three-Body Orthogonal Coordinates
. . . . . . . . . . . . . . . . .
116
4.2.2
Atom
–
Diatom Reactive Scattering Jacobi Method
. . . . . . .
119
4.2.3
Atom
–
Diatom Time-Independent APH Method
. . . . . . . . .
121
4.2.4
The Atom
–
Diatom Time-Dependent APH Method
. . . . . . .
127
4.3
Beyond Full Quantum Calculations
. . . . . . . . . . . . . . . . . . . . . . .
128
4.3.1
Reduced Dimensionality Quantum Treatments
. . . . . . . . . .
128
4.3.2
Leveraging on Classical Mechanics
. . . . . . . . . . . . . . . . .
130
4.3.3
Semiclassical Treatments
. . . . . . . . . . . . . . . . . . . . . . . . .
132
4.4
Basic Features of Atom
–
Diatom Reactions
. . . . . . . . . . . . . . . . . .
136
4.4.1
Energy Dependence of the Detailed Probabilities
. . . . . . . .
136
4.4.2
Quantum Effects
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
139
4.4.3
Experimental Observables
. . . . . . . . . . . . . . . . . . . . . . . .
142
4.4.4
Periodic Orbits and Statistical Considerations
. . . . . . . . . .
144
4.4.5
The Last Mile to the Experiment
. . . . . . . . . . . . . . . . . . .
147
4.5
Problems
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
148
4.5.1
Qualitative Problems
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
148
4.5.2
Quantitative Problems
. . . . . . . . . . . . . . . . . . . . . . . . . . .
149
5
Complex Reactive Applications: A Forward Look to Open
Science
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
151
5.1
Toward More Complex Systems
. . . . . . . . . . . . . . . . . . . . . . . . .
151
5.1.1
Full Range Ab Initio PESs for Many-Body Systems
. . . . .
151
5.1.2
Fitting PESs for Reactive and Nonreactive Channels
. . . . .
153
5.1.3
Four-Atom Many-Process Expansion
. . . . . . . . . . . . . . . .
156
5.1.4
Four-Atom Quantum and Quantum-Classical Dynamics
. . .
158
5.1.5
Last Mile Calculations for Crossed Beam Experiments
. . .
161
5.2
Large Systems Studies Using Classical Dynamics
. . . . . . . . . . . .
165
5.2.1
Trajectory Studies for Many-Body Systems
. . . . . . . . . . . .
165
5.2.2
Some Popular Molecular Dynamics Codes
. . . . . . . . . . . .
166
5.2.3
Force Fields
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
169
5.2.4
Toward Multiscale Treatments
. . . . . . . . . . . . . . . . . . . . .
172
5.3
Supercomputing and Distributed Computing Infrastructures
. . . . . .
173
5.3.1
High-Performance Versus High-Throughput Computing
. . .
173
Contents
xv

5.3.2
Networked Computing and Virtual Communities
. . . . . . . .
175
5.3.3
The Collaborative Grid Empowered Molecular
Simulator
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
178
5.4
Toward an Open Molecular Science
. . . . . . . . . . . . . . . . . . . . . .
180
5.4.1
A Research Infrastructure for Open Molecular Science
. . .
180
5.4.2
Foundations and Stakeholders for the Molecular Open
Science RI
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
181
5.4.3
Compute Resources and Data Management for Molecular
Open Science
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
183
5.4.4
Molecular Open Science Use-Cases
. . . . . . . . . . . . . . . . .
184
5.5
The Innovativity of the Open Science Design
. . . . . . . . . . . . . . . .
186
5.5.1
Service Layers and Data Storage
. . . . . . . . . . . . . . . . . . .
186
5.5.2
Multidisciplinarity, Societal Challenges, Impact
and Dissemination
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
188
5.5.3
User and Service Quality Evaluation
. . . . . . . . . . . . . . . . .
192
5.5.4
A Credit Economy
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
193
5.6
Problems
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
195
5.6.1
Qualitative Problems
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
195
5.6.2
Quantitative Problems
. . . . . . . . . . . . . . . . . . . . . . . . . . .
195
Appendix
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
197
References
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


You've reached the end of your free preview.
Want to read all 219 pages?
- Fall '19
- dr. ahmed