1000 2000 3000 4000 5000 18 20 22 24 refractive index

  • No School
  • AA 1
  • 51

This preview shows page 17 - 22 out of 51 pages.

0 1000 2000 3000 4000 5000 6000 1,4 1,6 1,8 2,0 2,2 2,4 Refractive index Thickeness of the layer [mm] red- Rised-mirror (TiO-mixture green- HL-Stack Ti 3 Si 7 O 20 blue HL-Stack TiO 2 FIELD STRENGTH Tutorial BDS 2016 Marco Jupé LZH 17 0 100 200 300 400 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 field strength distance from the surface [nm] Al 2 O 3 e-beam HfO 2 e-beam Ta 2 O 5 e-beam TiO 2 e-beam RISED - concept by an increase of silica content in the high refractive layers Increase of the material LIDT Reduction of n in the high refractive index material Increase in the field strength Reduction of the damage threshold An increase in LIDT can be achieved if the content of silica in the high refractive index layers is well balanced The optimized mixture depends on the material and from the design
Image of page 17
STABILIZATION OF AR-OPTICS Tutorial BDS 2016 Marco Jupé LZH 18 1,6 1,7 1,8 1,9 2,0 2,1 2,2 2,3 2,4 2,5 0,25 0,50 0,75 1,00 1,25 1,50 Cha09301 AR800-designs on different substrat materials Optical Thickness of Layer d optical [QWoT] Refractive Index n high MgF 2 CaF 2 Quarz BK7 -Glas Saphire Nd:YAG Dash line: optimal d optical of SiO 2 Solid line: optimal d optical of high refractive index material RISED - concept AR-optics (V-coatings) do not need a maximum refractive index contrast Optimum index depends on the index of the substrate Applying multilayer optics the maximum LIDT of the layer can be increased Usually, the damage threshold of AR optics is limited by the substrate Self focusing reduces the threshold of bulk material of about one order of magnitude
Image of page 18