La ecuación de la recta de regresión que relaciona la estatura y el peso es y

La ecuación de la recta de regresión que relaciona

This preview shows page 556 - 558 out of 640 pages.

La ecuación de la recta de regresión que relaciona la estatura y el peso es: y = 1,8 x + 62 a) ¿Qué estatura puede estimarse en un alumno que pesa 64 kg? b) Y si un alumno pesara 44 kg, ¿cuál sería su altura? c) ¿Cuál es la estatura media de los alumnos de esa clase? d) La pendiente de esa recta es positiva. ¿Qué significa esto? a) x = 64 y = 1,8 64 + 62 = 177,2 El alumno medirá 1,77 m. b) x = 44 y = 1,8 44 + 62 = 141,2 En este caso medirá 1,41 m. c) y = 1,8 56 + 62 = 162,8 La estatura media es 1,63 m. d) Si la pendiente es positiva, entonces la correlación entre las variables también es positiva, es decir, cuando los valores de una variable aumentan, los valores de la otra variable también lo hacen. Daniel afirma que si una nube de puntos es de una recta, el coeficiente de correlación siempre vale 1 o 1. Como Eva no está de acuerdo, Daniel prueba con los puntos de la recta cuya ecuación es y = − 5 x + 20, y Eva hace lo mismo con los puntos de y = 2 x x 2 . ¿Quién tiene razón? ¿Por qué? Si y = − 5 x + 20, entonces algunos de los puntos son: x = 0 y = 20 σ X = 1,41 σ Y = 7,07 σ XY = − 10 r XY = − 1 La dependencia es lineal. Si y = 2 x x 2 , no es una recta, y algunos de los puntos son: x = 0 y = − 2 σ X = 1,41 σ Y = 3,29 σ XY = 4 r XY = 0,86 La dependencia es débil; por tanto, Eva no tiene razón. Un equipo de alpinistas que escaló una montaña, midió la altitud y la temperatura cada 200 metros de ascensión. Luego reflejó los datos en estas tablas. Altitud (m) 2.200 2.400 2.600 2.800 3.000 3.200 Temperatura (°C) 5 3 2 2 2 1 Altitud (m) 800 1.000 1.200 1.400 1.600 1.800 2.000 Temperatura (°C) 22 20 17 15 11 9 8 055 X 2 1 0 1 2 Y 8 3 0 1 0 X 2 1 0 1 2 Y 30 25 20 15 10 054 053 Estadística bidimensional
Image of page 556
557 12 SOLUCIONARIO a) Toma las diez primeras mediciones y, si la correlación es fuerte, calcula la recta de regresión de la temperatura sobre la altitud. b) Estima la temperatura que habrá a los 1.900 metros de altitud. c) ¿Qué temperatura se estima a los 3.200 metros? ¿Cómo explicas las diferencias? a) x = 1.700 y = 11,2 σ X = 574,46 σ Y = 6,69 σ XY = − 3.820 r XY = − 0,99 La dependencia es fuerte y negativa. Recta de regresión de Y sobre X : y 11,2 = − ( x 1.700) y = − 0,012 x + 31,6 b) x = 1.900 y = − 0,012 1.900 + 31,6 = 8,8 La temperatura estimada es de 8,8 °C. c) x = 3.200 y = − 0,012 3.200 + 31,6 = − 6,8 La diferencia se debe a que el valor no está incluido en el intervalo [800, 2.600], formado por los datos que se han utilizado para calcular la recta de regresión. El alcalde de un pueblo ha constatado una reducción del número de nacimientos de niños, y ha encargado realizar un estudio. a) ¿Puede establecerse, de forma fiable, una fórmula que relacione el año con el número de nacimientos? b) ¿Cuántos nacimientos pueden estimarse en 2008? ¿Y en 2010? ¿Qué puede estimarse para 2050? c) ¿Es fiable esta última estimación? Razona la respuesta. x = 10,5 y = 34 σ X = 6,87 σ Y = 12,61 σ XY = − 83,63 r XY = − 0,97 La dependencia es fuerte y negativa, por lo que puede utilizarse la recta de regresión para relacionar las dos variables.
Image of page 557
Image of page 558

You've reached the end of your free preview.

Want to read all 640 pages?

  • Winter '15
  • palmerdev

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern

Ask Expert Tutors You can ask You can ask ( soon) You can ask (will expire )
Answers in as fast as 15 minutes