LINREG2

# ¯ x ¯ y& \$ ¯ x& n j 1 ¯ x x j& ¯ x u j

This preview shows pages 25–28. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ¯ X ' ¯ Y & \$ . ¯ X & ' n j ' 1 ¯ X ( X j & ¯ X ) U j ' n j ' 1 ( X j & ¯ X ) 2 . (55) Substituting ¯ Y ' 1 n j n j ' 1 Y j ' 1 n j n j ' 1 ( α % β X j % U j ) ' α % β . ¯ X % 1 n j n j ' 1 U j in (55) yields \$ " ' " % 1 n j n j ' 1 U j & ' n j ' 1 ¯ X ( X j & ¯ X ) U j ' n i ' 1 ( X i & ¯ X ) 2 ' " % j n j ' 1 1 n & ¯ X ( X j & ¯ X ) ' n i ' 1 ( X i & ¯ X ) 2 . U j . (56) Similar as for we therefore have: ˆ β E [ \$ " ] ' " % j n j ' 1 1 n & ¯ X ( X j & ¯ X ) ' n i ' 1 ( X i & ¯ X ) 2 E [ U j ] ' " . (57) This completes the proof of Proposition 1. Proof of Lemma 1: We have E ' n j ' 1 v j U j ' n j ' 1 w j U j ' E ' n i ' 1 ' n j ' 1 v i w j U i U j ' j n i ' 1 j n j ' 1 v i w j E ( U i U j ) ' j n j ' 1 v j w j F 2 , (58) where the last equality in (58) follows from E ( U i U j ) ' E ( U i ) E ( U j ) ' if i … j , ' E ( U 2 j ) ' F 2 if i ' j . (59) 26 Proof of Proposition 2: It follows from formula (52) and Lemma 2 that var( \$ \$ ) ' E [( \$ \$ & \$ ) 2 ] ' E j n j ' 1 X j & ¯ X ' n i ' 1 ( X i & ¯ X ) 2 U j 2 ' F 2 j n j ' 1 X j & ¯ X ' n i ' 1 ( X i & ¯ X ) 2 2 ' F 2 ' n j ' 1 ( X j & ¯ X ) 2 ' n i ' 1 ( X i & ¯ X ) 2 2 ' F 2 ' n j ' 1 ( X j & ¯ X ) 2 ' n j ' 1 ( X j & ¯ X ) 2 2 ' F 2 ' n j ' 1 ( X j & ¯ X ) 2 . (60) Similarly, it follows from formula (56) and Lemma 2 that var( \$ " ) ' E [( \$ " & " ) 2 ] ' E j n j ' 1 1 n & ¯ X ( X j & ¯ X ) ' n i ' 1 ( X i & ¯ X ) 2 U j 2 ' F 2 j n j ' 1 1 n & ¯ X ( X j & ¯ X ) ' n i ' 1 ( X i & ¯ X ) 2 2 ' F 2 j n j ' 1 1 n 2 & 2 1 n ¯ X ( X j & ¯ X ) ' n i ' 1 ( X i & ¯ X ) 2 % ¯ X 2 ( X j & ¯ X ) 2 ' n i ' 1 ( X i & ¯ X ) 2 2 ' F 2 1 n & 2 ¯ X (1/ n ) ' n j ' 1 ( X j & ¯ X ) ' n i ' 1 ( X i & ¯ X ) 2 % ¯ X 2 ' n j ' 1 ( X j & ¯ X ) 2 ' n i ' 1 ( X i & ¯ X ) 2 2 ' F 2 1 n % ¯ X 2 ' n j ' 1 ( X j & ¯ X ) 2 ' F 2 (1/ n ) ' n j ' 1 ( X j & ¯ X ) 2 % ¯ X 2 ' n j ' 1 ( X j & ¯ X ) 2 ' F 2 ' n j ' 1 X 2 j n ' n j ' 1 ( X j & ¯ X ) 2 , (61) where the last equality follows from the fact that (1/ n ) ' n j ' 1 ( X j & ¯ X ) 2 ' (1/ n ) ' n j ' 1 X 2 j & ¯ X 2 . Finally, it follows from Lemma 1 and the formulas (52) and (56) that 27 cov( \$ " , \$ \$ ) ' E [( \$ " & " )( \$ \$ & \$ )] ' E j n j ' 1 1 n & ¯ X ( X j & ¯ X ) ' n i ' 1 ( X i & ¯ X ) 2 U j j n j ' 1 X j & ¯ X ' n i ' 1 ( X i & ¯ X ) 2 U j ' F 2 j n j ' 1 1 n & ¯ X ( X j & ¯ X ) ' n i ' 1 ( X i & ¯ X ) 2 ( X j & ¯ X ) ' n i ' 1 ( X i & ¯ X ) 2 (62) which can be rewritten as cov( \$ " , \$ \$ ) ' F 2 (1/ n ) ' n j ' 1 ( X j & ¯ X ) & ¯ X ' n j ' 1 ( X j & ¯ X ) 2 ' n i ' 1 ( X i & ¯ X ) 2 2 ' & F 2 . ¯ X ' n j ' 1 ( X j & ¯ X ) 2 . (63) Proof of Proposition 5. Observe first from (44) and (9) that 1 n j n j ' 1 \$ U j ' ¯ Y & \$ " & \$ \$ ....
View Full Document

{[ snackBarMessage ]}

### Page25 / 29

¯ X ¯ Y& \$ ¯ X& n j 1 ¯ X X j& ¯ X U j n j 1...

This preview shows document pages 25 - 28. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online