Question15 44points true or false the regression sum

• Test Prep
• 12
• 98% (56) 55 out of 56 people found this document helpful

This preview shows page 7 - 10 out of 12 pages.

Question 15 4 / 4 points True or False: The Regression Sum of Squares (SSR) can never be greater than the Total Sum of Squares (SST).
Question 16 4 / 4 points True or False: The coefficient of determination represents the ratio of SSR to SST.
Question 17 4 / 4 points In a multiple regression problem involving two independent variables, if b 1 is computed to be +2.0, it means that , , .
Question 18 4 / 4 points The coefficient of multiple determination r 2 Y .12 measures the variation around the predicted regression equation. measures the proportion of variation in Y that is explained by X 1 and X measures the proportion of variation in Y that is explained by X 1 holding X 2 constant. will have the same sign as b 1 2 . .
Question 19 4 / 4 points The variation attributable to factors other than the relationship between the independent variables and the explained variable in a regression analysis is represented by
Question 20 4 / 4 points
TABLE 14-3 An economist is interested to see how consumption for an economy (in \$ billions) is influenced by gross domestic product (\$ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced  below. SUMMARY OUTPUT Regression Statistics Multiple R  0.991 R Square  0.982 Adjusted R Square 0.976 Standard Error  0.299 Observations  10 ANOVA              df      SS          MS           F        Signif F Regsion  2    33.4163   16.7082    186.325    0.0001 Resdual  7     0.6277    0.0897 Total     9   34.0440                 Coeff     StdError   t Stat    P-value Intcept   – 0.0861     0.5674     – 0.152    0.8837 GDP          0.7654     0.0574      13.340    0.0001 Price      – 0.0006     0.0028     – 0.219     0.8330 Referring to Table 14-3, when the economist used a simple linear regression model with consumption as the dependent variable and GDP as the independent variable, he obtained an r 2 value of 0.971. What additional percentage of the total variation of consumption has been explained by including aggregate prices in the multiple regression? In other words, the economist was explaining 97.1%, how much has that percentage or R-square increased after adding "price" as a second independent variable?
• • • 