Determine if the statement is true or false, and justify your answer. You may assume thatAandBarematrices.Ifthen eitherorn×nA−B.True. Ifi≠j, thenAij=Bij= 0, so (A−B)ij= 0, andA−Bis diagonal.True. Ifi=j, thenAij=Bij= 0, so (A−B)ij= 0, andA−Bis diagonal.False. Ifi=j, then (A−B)ij=Aij−Bijmay not be zero, soA−Bis not necessarily diagonal.False. Ifi≠j, then (A−B)ij=Aij−Bijmay not be zero, soA−Bis not necessarily diagonal.False. Ifi≠j, thenAij= −Bij, so (A−B)ij= 2Aij, andA−Bis not diagonal.n×nAB=BA,A=InB=In.True.AB=BAcan only be true if eitherA=InorB=In.False. For example,A=B= 0nn.False. For example,A=,B=.0110−1001False.AB=BAfor any matricesA≠B.False. For example,A=,B=.01101001