September 10, 2012
19 / 22

Primal-dual table
It’s important to memorize the primal-dual table. Here are some tips:
max
⇔
min
Constraints
⇔
variables
The two sides are not symmetric:
max
or
min
makes a difference
Define “natural” direction for constraints. For a
max
problem, it’s
natural to have a bound from above, so
≤
is defined as the natural
direction for constraints. Similarly,
≥
is the natural direction of
constraints for a
min
problem.
Constraints in the natural direction correspond to
≥
0
dual
variables; non-natural constraints correspond to
≤
0
dual
variables; equality constraints correspond to free dual variables;
and vice versa.
Lizhi Wang ([email protected])
IE 534 Linear Programming
September 10, 2012
20 / 22

Example 3
Find the dual
min
x
1
+ 2
x
2
+ 3
x
3
s
.
t
.
x
1
-
3
x
2
= 5
2
x
1
-
x
2
+ 3
x
3
≥
6
x
3
≤
4
x
1
≥
0
x
2
≤
0
x
3
free
.
↔
↔
↔
↔
↔
↔
↔
max
5
y
1
+ 6
y
2
+ 4
y
3
s
.
t
.
y
1
free
y
2
≥
0
y
3
≤
0
y
1
+ 2
y
2
≤
1
-
3
y
1
-
y
2
≥
2
3
y
2
+
y
3
= 3
.
Lizhi Wang ([email protected])
IE 534 Linear Programming
September 10, 2012
21 / 22

Example 4
Check the optimality of
(
x
*
1
= 5
, x
*
2
= 0
, x
*
3
=
-
4
/
3)
and
(
y
*
1
=
-
1
, y
*
2
= 1
, y
*
3
= 0)
.
1
x
*
is primal feasible
2
y
*
is dual feasible
3
primal and dual solutions are complementary:
0 = (
x
*
1
-
3
x
*
2
-
5)
⊥
y
*
1
free
0
≤
(2
x
*
1
-
x
*
2
+ 3
x
*
3
-
6)
⊥
y
*
2
≥
0
0
≤
(4
-
x
*
3
)
⊥
-
y
*
3
≥
0
0
≤
x
*
1
⊥
(1
-
y
*
1
-
2
y
*
2
)
≥
0
0
≤ -
x
*
2
⊥
(
-
3
y
*
1
-
y
*
2
-
2)
≥
0
free
x
*
3
⊥
(3
y
*
2
+
y
*
3
-
3) = 0
Lizhi Wang ([email protected])
IE 534 Linear Programming
September 10, 2012
22 / 22

You've reached the end of your free preview.
Want to read all 22 pages?
- Spring '12
- lizhiwang
- Operations Research, Linear Programming, Optimization, Dual problem, Lizhi Wang