X n taylor polynomial t n x n i 0 f i a i x a i f x t

This preview shows page 44 - 49 out of 59 pages.

We have textbook solutions for you!
The document you are viewing contains questions related to this textbook.
Trigonometry
The document you are viewing contains questions related to this textbook.
Chapter 6 / Exercise 8
Trigonometry
Larson
Expert Verified
x n ; Taylor polynomial: T n ( x ) = n i =0 f ( i ) ( a ) i ! ( x - a ) i . f ( x ) T n ( x ) . Taylor’s inequality: If | f ( n +1) ( x ) | M for | x - a | d , then on | x - a | d , | R n ( x ) | = | f ( x ) - T n ( x ) | M ( n + 1)! | x - a | n +1 . Taylor Theorem: If f ( x ) = T n ( x ) + R n ( x ), and lim n →∞ R n ( x ) = 0 for | x - a | < R , then f ( x ) is equal to its Taylor series for | x - a | < R . To this end, the following result is useful: lim n →∞ x n n ! = 0 . Series for composite functions; Multiplication and division of power series. Maclaurin series for some special functions Example. Maclaurin series for some special functions: e x = 1 + x 1! + x 2 2! + x 3 3! + ... , R = ; sin x = x - x 3 3! + x 5 5! - ... , R = ; 44
We have textbook solutions for you!
The document you are viewing contains questions related to this textbook.
Trigonometry
The document you are viewing contains questions related to this textbook.
Chapter 6 / Exercise 8
Trigonometry
Larson
Expert Verified
cos x = 1 - x 2 2! + x 4 4! - ... , R = ; ln(1 + x ) = x - x 2 2 + x 3 3 - ... , R = 1; arctan x = x - x 3 3 + x 5 5 - x 7 7 + ..., R = 1. Series for composite functions Example. Maclaurin series: (i) e x 2 , sin( x 2 ). (ii) e sin x = 1 + sin x + sin 2 x 2! + sin 3 x 3! + ... = 1 + ( x - x 3 3! + x 5 5! + ... ) + ( ( x - x 3 3! + x 5 5! + ... ) 2 2! ) + ( ( x - x 3 3! + x 5 5! + ... ) 3 3! ) + ... = 1 + x + x 2 2! + 0 x 3 + ... Binomial series If k is a real number and | x | < 1, then (1 + x ) k = 1 + kx + k ( k - 1) 2! x 2 + · · · = n =0 k n x n , here k n = k ( k - 1) · · · ( k - n + 1) n ! , k 0 = 1 . Application: Let f ( x ) = (1 + x ) k , then f ( n ) (0) = k n n ! = k ( k - 1) · · · ( k - n + 1) . Example. Maclauring series for f ( x ) = 3 1 + x . 45
Solution: 3 1 + x = 1 + 1 3 x - 2 3 2 2! x 2 + 2 · 5 3 3 3! x 3 - 2 · 5 · 8 3 4 4! x 4 + · · · . Example. Let f ( x ) = 5 1 + x 2 . Evaluate f (4) (0). Solution. Use the binomial series to find the Maclaurin series of f ( x ). f ( n ) (0) n ! = k n Hence f ( n ) (0) = k n n ! = k ( k - 1) · · · ( k - n + 1) . So f (4) (0) = - 0 . 8064. Taylor series at other centers Example. Find the Taylor series for f ( x ) = sin x at the center x = π 3 . Multiplication and division of Taylor series Example. Evaluate lim x 0 e x sin x - x x 2 . e x sin x = 1 + x 1! + x 2 2! + x 3 3! + ... x - x 3 3! + ... = x + x 2 + 1 3 x 3 + ... Therefore e x sin x - x x 2 = 1 + 1 3 x + ... Example. Let f ( x ) = x 0 t 3 e 3 t dt (a) Find the Maclaurin series of the function f . (b) Find the radius of the series in (a). 46
Solution: a) t 3 e 3 t = t 3 n =0 (3 t ) n n ! = n =0 3 n n ! t n +3 . Hence f ( x ) = x 0 n =0 3 n n ! t n +3 dt = n =0 x 0 3 n n ! t n +3 dt = n =0 3 n n ! t n +4 n + 4 | x 0 = n =0 3 n n !( n + 4) x n +4 b) | a n +1 /a n | = 3( n + 4) ( n + 1)( n + 5) | x | 0 as n → ∞ . Therefore R = . Example. Find the first 5 non-zero terms in the Maclaurin series for e x cos(3 x ). Solution. Note that e x = 1 + x 1! + x 2 2! + x 3 3! + x 4 4! + x 5 5! + ... = 1 + x + x 2 2 + x 3 6 + x 4 24 + ..., cos x = 1 - x 2 2! + x 4 4! - x 6 6! + ... Hence cos(3 x ) = 1 - (3 x ) 2 2! + (3 x ) 4 4! - (3 x ) 6 6! + ... = 1 - 9 x 2 2 + 27 x 4 8 - ... We have e x cos(3 x ) = 1 + x + x 2 2 + x 3 6 + x 4 24 + ... - 9 x 2 2 - 9 x 3 2 - 9 x 4 4 - ... + 27 x 4 8 + ... = 1 + x + ( 1 2 - 9 2 ) x 2 + ( 1 6 - 9 2 ) x 3 + ( 1 24 - 9 4 + 27 8 ) x 4 + ... 47
= 1 + x - 4 x 2 - 13 3 x 3 + 7 6 x 4 + ... Example. Find the first 3 non-zero terms in the Maclaurin series for tan x . Solution: tan x = x + 1 3 x 3 + 2 15 x 5 + ... . Applications of Taylor series. Example. 1 - 1 3 + 1 5 - 1 7 + ... = π 4 . Example. Calculate the sum of the following series, given that it is a known series evaluated at a certain value of x : 1 - 1 4 · 2! + 1 16 · 4! - 1 64 · 6! + 1 256 · 8! - · · · Sol: 1 - 1 4 · 2!

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture