A 700 a 3 4 2 3 a 700 det λ λ 2 1 λ 1 λ 1 0 λ 1 1 3 4

This preview shows page 3 - 4 out of 4 pages.

A700A=3 42 3A700=detλ= (λ21) = (λ1)(λ+ 1) = 0λ1=13 42 31 00 1λ2= 1.111)
True. SinceAis invertible, the determinant is 0, and thereforeAis diagonalizable.True. SinceAis invertible, the determinant is not 0, and thereforeAdiagonalizable.False. For exampleis not invertible, but is diagonalizable.1101False. For exampleis not invertible, but is diagonalizable.0100False. For exampleis not invertible, but is diagonalizable.10001 00 0is
12/4/17, 21(40UW Common Math 308 Section 6.29.1/1 points |Previous AnswersHoltLinAlg2 6.2.033b.Determine if the statement is true or false, and justify your answer.IfAandBare diagonalizablematrices, then so isAB.
Page 4 of 4
10.1/1 points |Previous AnswersHoltLinAlg2 6.2.044.DiagonalizeAif possible. (FindPandDsuch thatfor the given matrixA. Enter your answer as one augmented matrix. If the matrix is not able to be diagonalizcell.)DNEDNEDNEDNEDNEDNEDNEDNEDNEDNEDNEDNEDNEDNE
End of preview. Want to read all 4 pages?

Upload your study docs or become a

Course Hero member to access this document

Term
Fall
Professor
N/A
Tags
Math

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture