# Sin x y consequently f x x cos x y 010 100points find

• Homework Help
• 11
• 100% (12) 12 out of 12 people found this document helpful

This preview shows page 4 - 7 out of 11 pages.

sin(x+y).Consequently,fx=xcos(x+y).01010.0pointsFind the slope in thex-direction at thepointP(0,2, f(0,2)) on the graph offwhenf(x, y) = 2(2x+y)exy.1.slope =-82.slope =-63.slope =-4correct4.slope =-25.slope =-10Explanation:The graph offis a surface in 3-spaceand the slope in thex-direction at the pointP(0,2, f(0,2)) on that surface is the value ofthe partial derivativefxat (0,2). Nowfx= 4exy-2(2xy+y2)exy.Consequently, atP(0,2, f(0,2))slope =-4.01110.0pointsFind the value offxat (1,3) whenf(x, y) = 3x3-8x2y-2x+ 6y.Correct answer:-41.Explanation:After differentiation,fx=∂f∂x= 9x2-16xy-2.At (1,3), therefore,fxvextendsinglevextendsinglevextendsingle(1,3)=-41.01210.0pointsDetermine∂z∂ywhenz= 4ex/y.1.∂z∂y=-4y2ex/y2.∂z∂y=-4xy2ex/y3.∂z∂y=4y2ex/y4.∂z∂y=-4xyex/y5.∂z∂y=4xy2ex/ycorrect6.∂z∂y=4xyex/yExplanation:Differentiatingzwith respect toykeepingxfixed we see that∂z∂y= 4ex/y·(-x/y)∂y.
guzman (lg28686) – HW 10 – hanselman – (53860)5Consequently,∂z∂y=4xy2ex/y.01310.0pointsFindfxwhenf(x, y) =integraldisplayxycos(t4)dt .1.fx= sin(x4)2.fx= 03.fx= cos(x4)correct4.fx= 4x3sin(x4)5.fx= 4x3cos(x4)Explanation:By the Fundamental theorem of calculus,∂f∂x=∂xintegraldisplayxycos(t4)dt= cos(x4).01410.0pointsDeterminefyxwhenf(x, y) =x2cosxy .1.fyx=-y2(3 sinxy+xycosxy)2.fyx=-x2(3 sinxy+xycosxy)correct3.fyx= 2y2(3 sinxy-xycosxy)4.fyx=-2y2(3 cosxy+xysinxy)5.fyx=x2(3 cosxy-xysinxy)6.fyx=-2x2(3 cosxy+xysinxy)7.fyx=y2(3 cosxy-xysinxy)8.fyx= 2x2(3 sinxy-xycosxy)Explanation:By the Product Rule,fy=-x3sinxy .But thenfyx=-3x2sinxy-x3ycosxy .Consequently,fxy=-x2(3 sinxy+xycosxy).01510.0pointsFind the value offxx+fyyat (1,-1) whenf(x, y) =1xy-3x2+ 2y2.1.(fxx+fyy)vextendsinglevextendsinglevextendsingle(1,1)=-72.(fxx+fyy)vextendsinglevextendsinglevextendsingle(1,1)=-6correct3.(fxx+fyy)vextendsinglevextendsinglevextendsingle(1,1)=-54.(fxx+fyy)vextendsinglevextendsinglevextendsingle(1,1)= 35.(fxx+fyy)vextendsinglevextendsinglevextendsingle(1,1)= 2Explanation:Differentiatingftwice with respect toxweobtain∂f∂x=-1x2y-6x,2f∂x2=2x3y-6.Repeating forywe next obtain∂f∂y=-1xy2+ 4y,2f∂x2=2xy3+ 4.
guzman (lg28686) – HW 10 – hanselman – (53860)6Thus at (1,-1),(fxx+fyy)vextendsinglevextendsinglevextendsingle(1,1)=-6.01610.0pointsDeterminedzdtwhenz=xln(x+ 11y)andx= sint ,y= cost .1.dzdt=ln(x+ 11y) sint-11xcostx+ 11y2.dzdt= ln(x+ 11y) cost-11xsintx+ 11y3.dzdt= ln(x+ 11y) cost+x(sint-cost)x+ 11y4.dzdt= ln(x+11y) cost+xcost-11xsintx+ 11ycorrect5.dzdt= ln(x+11y) sint+xsint-11xcostx+ 11yExplanation:By the Chain Rule for Partial Differentia-tion,dzdt=∂z∂xdxdt+∂z∂ydydt.Here, we have that∂z∂x=xx+ 11y+ ln(x+ 11y),dxdt= costand∂z∂y=11xx+ 11y,dydt=-sint .It follows thatdzdt= ln(x+ 11y) cost+xcost-11xsintx+ 11y.keywords:01710.0pointsUse the Chain Rule to find∂z∂twhenz=x2-3xy+y2,andx= 3s-2t ,y=st .1.∂z∂t= 6x-9y-3xt+ 2yt2.∂z∂t=-4x+ 6y-3xs+ 2yscorrect3.∂z∂t= 6x+ 6y-3xt+ 2yt4.∂z∂t=-4x-9y-3xs+ 2ys5.∂z∂t

Course Hero member to access this document

Course Hero member to access this document

End of preview. Want to read all 11 pages?

Course Hero member to access this document

Term
Spring
Professor
• • • 