This yields 136 The PERCENTILEEXC function computes the k th percentile as the

This yields 136 the percentileexc function computes

This preview shows page 9 - 12 out of 19 pages.

data point (130) and the fourteenth data point (140). This yields 136. The PERCENTILE.EXC function computes the k th percentile as the (n+1)p ranked item in the data set. PERCENTILE.EXC computes the ninetieth percentile of the data as (15+1)(.9), which is the 14.4 ranked item. That is, the ninetieth percentile (assuming again data is sorted in ascending order) is computed to be 40 percent of the way between the fourteenth data point (140) and the fifteenth data point (300). This yields (0.60)(140) + (0.40)(300) =204. You can see that the two functions return drastically different answers. If you consider the data to have been drawn by sampling from a large set of data, you might assume that given the data you’ve seen, there is much more than a 10 percent chance that a piece of data would be more than 136. After all, two of the 15 data points are more than 130, so it does not seem reasonable to say that the ninetieth percentile of the data is only 136.
Image of page 9