1 conditionally convergent 2 absolutely convergent 3 divergent 016 100 points

# 1 conditionally convergent 2 absolutely convergent 3

This preview shows page 3 - 4 out of 4 pages.

Subscribe to view the full document.

#### You've reached the end of your free preview.

Want to read all 4 pages?

Unformatted text preview: 1. conditionally convergent 2. absolutely convergent 3. divergent 016 10.0 points Determine whether the following series ∞ summationdisplay n =1 4 n + 3 (2 n )! is absolutely convergent, conditionally con- vergent, or divergent. 1. conditionally convergent 2. absolutely convergent 3. divergent cadena (jc59484) – HW12 – lawn – (55930) 4 017 10.0 points Determine whether the series I. ∞ summationdisplay n =1 ( n !) 2 (2 n )! 2 n , II. ∞ summationdisplay n =1 1 2 n parenleftBig n + 1 n parenrightBig n 2 , converge or diverge. 1. only series II converges 2. both series diverge 3. only series I converges 4. both series converge 018 10.0 points Determine which, if any, of the following series diverge. ( A ) ∞ summationdisplay n =1 (6 n ) n n ! ( B ) ∞ summationdisplay n =1 5 n ( n + 4) n ( C ) ∞ summationdisplay n = 1 parenleftbigg 3 n 2 n + 3 parenrightbigg n parenleftbigg 5 6 parenrightbigg n 1. A only 2. A and B 3. B and C 4. none of them 5. C only 6. A and C 7. all of them 8. B only 019 10.0 points Decide which of the following series diverge. ( A ) ∞ summationdisplay n = 1 n 7 + 4 n + 2 parenleftbigg 2 7 parenrightbigg n ( B ) ∞ summationdisplay n =1 parenleftbigg 3 n + 4 n 2 + 7 parenrightbigg n ( C ) ∞ summationdisplay n =1 √ n- 3 √ n + 4 parenleftbigg 4 3 parenrightbigg n 1. A and C 2. all of them 3. B only 4. A and B 5. B and C 6. none of them 7. A only 8. C only 020 10.0 points Which of the following infinite series con- verges conditionally? 1. ∞ summationdisplay n = 1 8(- n ) n ( n + 5) n 2. ∞ summationdisplay k = 1 (- 1) k 4 7 k ln( k ) + 8 3. ∞ summationdisplay n = 1 cos( nπ ) parenleftbigg 5 n 7 n + 4 parenrightbigg n 4. ∞ summationdisplay n = 1 (- 2) n 5. ∞ summationdisplay m =1 7 8 m- 4...
View Full Document

• Fall '11
• Gramlich
• Accounting, Mathematical Series