The uptake of anthropogenic carbon since 1750 has led to the ocean becoming

The uptake of anthropogenic carbon since 1750 has led

This preview shows page 3 - 5 out of 23 pages.

The uptake of anthropogenic carbon since 1750 has led to the ocean becoming more acidic with an average decrease in pH of 0.1 units [IPCC Working Group I Fourth Assessment]. However, the effects of observed ocean acidification on the marine biosphere are as yet undocumented. [1.3] A global assessment of data since 1970 has shown it is likely 6 that anthropogenic warming has had a discernible influence on many physical and biological systems. Much more evidence has accumulated over the past five years to indicate that changes in many physical and biological systems are linked to anthropogenic warming. There are four sets of evidence which, taken together, support this conclusion: 1. The Working Group I Fourth Assessment concluded that most of the observed increase in the globally averaged temperature since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations. 2. Of the more than 29,000 observational data series 7 , from 75 studies, that show significant change in many physical and biological systems, more than 89% are consistent with the direction of change expected as a response to warming. (Figure SPM-1) [1.4] 5 Measured by the Normalised Difference Vegetation Index, which is a relative measure of the amount of green vegetation in an area based on satellite images. 6 See Endbox 2. 7 A subset of about 29,000 data series was selected from about 80,000 data series from 577 studies. These met the following criteria: (1) Ending in 1990 or later; (2) spanning a period of at least 20 years; and (3) showing a significant change in either direction, as assessed in individual studies.
Image of page 3
IPCC WGII Fourth Assessment Report Summary for Policymakers April 6 th , 2007 4 3 A global synthesis of studies in this Assessment strongly demonstrates that the spatial agreement between regions of significant warming across the globe and the locations of significant observed changes in many systems consistent with warming is very unlikely to be due solely to natural variability of temperatures or natural variability of the systems.(see Figure SPM-1) [1.4] 4 Finally, there have been several modelling studies that have linked responses in some physical and biological systems to anthropogenic warming by comparing observed responses in these systems with modelled responses in which the natural forcings (solar activity and volcanoes) and anthropogenic forcings (greenhouse gases and aerosols) are explicitly separated. Models with combined natural and anthropogenic forcings simulate observed responses significantly better than models with natural forcing only. [1.4] Limitations and gaps prevent more complete attribution of the causes of observed system responses to anthropogenic warming. First, the available analyses are limited in the number of systems and locations considered. Second, natural temperature variability is larger at the regional than the global scale, thus affecting identification of changes due to external forcing. Finally, at the regional scale other factors (such as land-use change, pollution, and invasive species) are influential. [1.4]
Image of page 4
Image of page 5

You've reached the end of your free preview.

Want to read all 23 pages?

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

Stuck? We have tutors online 24/7 who can help you get unstuck.
A+ icon
Ask Expert Tutors You can ask You can ask You can ask (will expire )
Answers in as fast as 15 minutes