Semejanza de triángulos el hecho que todo polígono

Info icon This preview shows pages 133–137. Sign up to view the full content.

SEMEJANZA DE TRIÁNGULOS El hecho que todo polígono, de más de tres lados, admita descomposición en triángulos, motivó en los geómetras una especial atención por estas elementales figuras RP CA QR BC PQ AB y R C ; Q B ; P A : si solo y si PQR Δ ABC Δ = = = = = A P B Q C R D S E T TP EA ST DE RS CD QR BC PQ AB = = = =
Image of page 133

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

134 TEOREMAS DE SEMEJANZA DE TRIÁNGULOS Los geómetras griegos de la antigüedad, notaron que para establecer la semejanza entre dos triángulos no era necesario verificar cada una de las seis condiciones expuestas anteriormente, sino que la ocurrencia de algunas de ellas provocaba necesariamente la ocurrencia de los otros restantes. * TEOREMA FUNDAMENTAL Para que dos triángulos sean semejantes, basta que los ángulos de uno sean iguales a los ángulos del otro Corolario : Toda paralela a un lado de un triángulo, determina un triángulo semejante al primero Si AB // DE , entonces Δ CDE ~ Δ CAB Los criterios de semejanza son condiciones mínimas para decidir si dos triángulos son semejantes. Una vez comprobada la semejanza se cumplen todas las condiciones que le son propias, es decir, los tres ángulos correspondientes son congruentes y los tres pares de lados homólogos proporcionales. TEOREMA AA (O CRITERIO AA DE SEMEJANZA) Dos triángulos que tienen dos ángulos respectivamente congruentes son semejantes Hipótesis : A D y C F Tesis Δ ABC Δ DEF Nota : Ten presente que si un triángulo es semejante a otro y este último es congruente con un tercero, el primero y el tercero son semejantes.
Image of page 134
135 TEOREMA LAL (O CRITERIO LAL DE SEMEJANZA) Si en dos triángulos las medidas de dos pares de lados son proporcionales y los ángulos comprendidos entre esos lados son congruentes, entonces los triángulos son semejantes. = ' C C ' B ' C CB ' A ' C CA ∆ ABC ~ ∆ A’B’C’ TEOREMA LLL (o criterio LLL de semejanza) Si las medidas de los tres pares de lados de dos triángulos son proporcionales, entonces los triángulos son semejantes. ' A ' C CA ' C ' B BC ' B ' A AB = = ∆ ABC ~ ∆ A’B’C’ Nota : Como criterios de semejanza de triángulos tenemos el teorema AA y los teoremas LAL y LLL Nota : los criterios de semejanza son condiciones mínimas para decidir si dos triángulos son semejantes. Una vez comprobada la semejanza se cumplen todas las condiciones que le son propias, es decir, los tres ángulos correspondientes son congruentes y los tres pares de lados homólogos, proporcionales. Nota : Se llaman figuras equivalentes a aquellas que poseen igual área SEMEJANZA DE TRIÁNGULOS RECTÁNGULOS Dos triángulos rectángulos siempre tienen un ángulo congruente entre ellos: el de 90°. Por lo tanto, se tiene dada, de antemano, una condición para que sean semejantes. Entonces, a partir del teorema de semejanza AA (para cualquier triángulo), se deduce: a. Dos triángulos rectángulos son semejantes si tienen un ángulo agudo congruente.
Image of page 135

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

136 b.
Image of page 136
Image of page 137
This is the end of the preview. Sign up to access the rest of the document.
  • Fall '97
  • APAUL

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern