{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

A draw the nyquist contour and mapping for ghs b

Info icon This preview shows pages 67–73. Sign up to view the full content.

View Full Document Right Arrow Icon
(a) Draw the Nyquist contour and mapping for GH(s) (b) Determine whether the system is stable by utilizing the Nyquist criterion. GH(s) = ) 1 ( + s s k τ (a) The origin of the S-plane s=E e j Ф 0 lim E GH(s) = 0 lim E φ i Ee k = 0 lim E φ i e E k ) ( -90< Ф <+90 Ф =90 ׁ at ω =0 + GH(s) = -90 jv u 1 j 1 j + 0 1
Image of page 67

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Ф =-90 ׁ at ω =0 - GH(s) =-+90 Magnitude of GH(s) is infinite. (b) The portion from ω =0 + to ω =+ GH(s) ω j s = = GH(j ω ) α ω + lim GH(j ω ) = α ω + lim ) 1 ( + ωτ ω j j k = α ω + lim ω π τω 1 2 tan 2 k ω = + magnitude = 0 phase = -180 ׁ ω = τ 1 , magnitude=K τ phase = -135 ׁ (c) The portion from ω = + to ω = - α r Lim GH(s) = α r Lim 2 r K τ e -2j Ф S= re j Ф at ω =+ , Ф ( ω ) = -180 at ω =- , Ф ( ω ) = +180 Radius E s-plane Radius r σ ω j * τ 1
Image of page 68
Nyquist contour Z =N+P =0+0 = 0 This system is stable. Chapter (13) 18. Determine the z transform of f(t)=sin wt for t 0 (16 Marks) Sin wt = j e e jwt jwt 2 . sin ω t =e j ω t - e –j ω t 2j sin ω t = { e j ω t - e –j ω t } 2j 2j f(z) = 1 ( __z__ - ____z __ ) 2j z-e j ω t z-e –j ω t = 1 ( z ( z-e –j ω t ) - z (z-e j ω t ) ) 2j z 2 - ze –j ω t - ze j ω t +1 = 1 ( z ( z-e –j ω t ) - z (z-e j ω t ) ) 2j z 2 - ze –j ω t - ze j ω t +1 Radius= α * α ω = α ω + = τ ω 1 = + = 0 ω = 0 ω u
Image of page 69

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon