J Zakrzewski V G Dapprich S Daniels A D Strain M C Farkas O Malick D K Rabuck A

J zakrzewski v g dapprich s daniels a d strain m c

This preview shows page 26 - 28 out of 44 pages.

Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian Inc.: Pittsburgh, PA, 2004. 45. The beta-scission of the cumyloxyl radical is the main pathway for its decay in N 2 -saturated acetonitrile solution. The process results in the release of a methyl (H 3 C ) radical and the formation of benzaldehyde with a rate constant on the order of 7 10 5 s -1 . 46. Avila, D. V.; Brown, C. E.; Ingold, K. U.; Lusztyk, J. Solvent effects on the competitive β - scission and hydrogen atom abstraction reactions of the cumyloxyl radical. Resolution of a long- standing problem J. Am. Chem. Soc. 1993 , 115 , 466-470. 47. Montgomery Jr., J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. A complete basis set model chemistry. VII. Use of the minimum population localization method. J. Chem. Phys. 2000 , 112 , 6532-6542. 48. DiLabio, G. A.; Johnson, E. R.; Otero-de-la-Roza, A. Phys. Chem. Chem. Phys. 2013 . Advance Article. DOI: 10.1039/C3CP51559A 49. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010 , 132 , 154104. 50. Goerigk, L.; Kruse, H.; Grimme, S. Benchmarking Density Functional Methods against the S66 and S66 × 8 Datasets for Noncovalent Interactions. ChemPhysChem 2011 , 12 , 3421−3433. 51. Faver, J. C.; Benson, M. L.; He, X. A.; Roberts, B. P.; Wang, B.; Marshall, M. S.; Kennedy, M. R.; Sherrill, C. D.; Merz, K. M. Formal Estimation of Errors in Computed Absolute Interaction Energies of Protein−Ligand Complexes. J. Chem. Theory Comput. 2011 , 7 , 790-797.
Image of page 26
27 52. Burns, L. A.; ázquez - Mayagoi a, .; Sumpter, B. G.; Sherrill,C. D. Density-Functional Approaches to Noncovalent Interactions: A Comparison of Dispersion Corrections (DFT-D), Exchange-Hole Dipole Moment (XDM) Theory, and Specialized Functionals. J. Chem. Phys. 2011 , 134 , 084107. 53. Grana er, J.; Pito á k, M.; Hobza, P. Accuracy of Several Wave Function and Density Functional Theory Methods for Description of Noncovalent Interaction of Saturated and Unsaturated Hydrocarbon Dimers. J. Chem. Theory Comput. 2012 , 8 , 2282-2292. 54. Perdew, J. P.; Burke, K. Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996 , 77 , 3865-3868. 55. Risthaus, T.; Grimme, S. Benchmarking of London Dispersion-Accounting Density Functional Theory Methods on Very Large Molecular Complexes. J. Chem. Theory Comput. 2013 , 9 , 1580−1591 . 56. a) Karton, A.; Tarnopolsky, A.; Lamére, J. F.; Schatz, G. C.; Martin, J. M. L. Highly Accurate First-Principles Benchmark Data Sets for the Parametrization and Thermochemical Kinetics. J. Phys. Chem. A 2008 , 112 , 12868-12886. b) Guner, V., Khuong, K. S.; Leach, A. G.; Lee, P. S.; Bartberger, M. D.; Houk, K. N. A standard set of pericyclic reactions of hydrocarbons for the benchmarking of computational methods: The performance of ab initio, density functional, CASSCF, CASPT2, and CBS-QB3 methods for the prediction of activation barriers, reaction energetics, and transition state geometries. J. Phys. Chem. A 2003 , 107 , 11445-11459. c) Ess, D.
Image of page 27
Image of page 28

You've reached the end of your free preview.

Want to read all 44 pages?

  • Fall '19
  • dr. ahmed

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture