Rotación de 90º xy barb2right yx rotación de 180º

Info icon This preview shows pages 209–213. Sign up to view the full content.

correspondiente de la figura original y el centro de rotación. Rotación de 90º (x,y) ------- barb2right (-y,x) Rotación de 180º (x,y) ------- barb2right (-x,-y)
Image of page 209

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

210 EJEMPLO PSU-2 : En la figura, al vértice C del cuadrado ABCD se le aplica una rotación en180° en el sentido horario, con centro en A. ¿Cuáles son las coordenadas de C en su nueva posición? A) En (2, 2) B) En (2, 0) C) En (4, 2) D) En (0, 0) E) En (0, 2) Una reflexión de un figura geométrica respecto de un eje llamado eje de simetría es el movimiento que transforma la figura de manera que cada punto P y su imagen P’ equidisten del eje de simetría y el segmento ' PP sea perpendicular al eje de simetría Nota: (1) Una reflexión respecto de un eje es conocida como simetría axial (2) Una reflexión respecto de un punto es conocida como simetría central EJEMPLO PSU-3 : En la figura, la imagen reflexiva del punto P, con respecto al eje de simetría L, es el punto A) Q B) R C) S D) T E) U
Image of page 210
211 Ejes de simetría: Si al aplicar una reflexión a una figura geométrica en torno a un eje ésta se mantiene “invariante”, es decir, no cambia, diremos que ése es un eje de simetría de la figura. El cuadrado de la figura permanecerá igual si se refleja en torno a sus diagonales. Ambas diagonales son ejes de simetría del cuadrado. También permanecerá igual (o se superpondrá sobre sí mismo) si se refleja en torno a los ejes determinados por los puntos medios de lados opuestos Estos ejes también son ejes de simetría del cuadrado. El cuadrado tiene cuatro ejes de simetría En el caso de los triángulos, tenemos: Tipo Ejes Triángulo equilátero Tres ejes de simetría Triángulo Isósceles Un eje de simetría Triángulo Escaleno Ningún eje de simetría En el caso de los cuadriláteros, tenemos: Tipo Ejes Cuadrado Cuatro ejes de simetría Rectángulo Dos ejes de simetría Rombo Dos ejes de simetría Trapecio isósceles Un eje de simetría Trapezoide Ningún eje de simetría Nota: El círculo tiene infinitos ejes de simetría. Cada recta que pasa por el centro es un eje de simetría del círculo.
Image of page 211

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

212 Nota: En el caso de los polígonos regulares, estos tienen tantos ejes de simetría como números de lados EJEMPLO PSU-4 : ¿Cuál(es) de los siguientes cuadriláteros tiene(n) siempre ejes de simetría? I) Cuadrado II) Rombo III) Trapecio A) Sólo I B) Sólo II C) Sólo I y II D) Sólo I y III E) I, II y III Teselar una superficie consiste en cubrirla completamente con “baldosas”, de modo que éstas encajen perfectamente sin dejar espacios por cubrir Con rectángulos, cuadrados y rombos es muy sencillo cubrir una superficie o teselar. También es posible teselar con cualquier tipo de triángulos Con polígonos regulares . La condición que debe cumplirse para recubrir una superficie es que los ángulos que convergen en cada vértice sumen 360°. Nota: Los únicos polígonos regulares que permiten teselar son los triángulos equiláteros, los cuadrados y los hexágonos regulares. Todo cuadrilátero tesela el plano EJEMPLO PSU-5 : El piso de un baño se puede teselar con 360 cerámicas cuadradas de 10 cm de lado cada una. Si se pudiera teselar con cerámicas cuadradas de 30 cm de lado,
Image of page 212
Image of page 213
This is the end of the preview. Sign up to access the rest of the document.
  • Fall '97
  • APAUL

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern