2 lim x f x 59 lim x f x 60 lim x f x 61 5 lim x f x Evaluate Show supporting

# 2 lim x f x 59 lim x f x 60 lim x f x 61 5 lim x f x

This preview shows page 3 - 4 out of 4 pages.

2 lim x f x 59. 0 lim x f x 60. lim x f x    61. 5 lim x f x   __________________________________________________________________________________ Evaluate. Show supporting work for each problem (algebraic steps or sketch). No calculator . 62. 2 3 6 3 lim x x x x  63. 2 0 5 25 lim x x x 64. 0 1 1 lim x x x 65. 2 6 6 3 18 lim x x x x  66. 3 2 8 2 lim x x x  67. 2 2 3 5 4 1 lim x x x x  TURN->>> Evaluate. Show supporting work for each problem (algebraic steps or sketch). No calculator . 68. 3 1 3 lim x x 69. 3 1 3 lim x x 70. 3 1 3 lim x x 71. 2 3 1 3 lim x x 72. § ¨ 3 1 lim x x 73. § ¨ 3 1 lim x x 2 1 , 1 74. , 1 x x f x x x (a) 1 lim x f x (b) 1 lim x f x (c) 1 lim x f x 2 6 if 3 75. 3 4 if 3 x x x f x x x (a) 3 lim x f x (b) 3 f __________________________________________________________________________________________ Use the definition of the derivative to find the derivative. No calculator . 0 lim h f x h f x f x h . (You must know this formula.) 76. 2 8 f x x x 77. 9 f x x 78. 3 4 f x x 79. 3 2 2 4 f x x x x ________________________________________________________________________________________ Use the differentiation rules (power rule, product rule, quotient rule) to find the derivative. Do not leave negative exponents or complex fractions in your answers. No calculator . #### You've reached the end of your free preview.

Want to read all 4 pages?

• Fall '08
• zeilberg
• Calculus
• • •  