Chemistry_Grade_10-12 (1).pdf

Activity demonstration the conservation of atoms in

Info icon This preview shows pages 232–234. Sign up to view the full content.

View Full Document Right Arrow Icon
Activity :: Demonstration : The conservation of atoms in chemical reac- tions Materials: Coloured marbles or small balls to represent atoms. Each colour will represent a different element. 218
Image of page 232

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
CHAPTER 11. PHYSICAL AND CHEMICAL CHANGE - GRADE 10 11.5 Prestik Method: 1. Choose a reaction from any that have been used in this chapter or any other balanced chemical reaction that you can think of. To help to explain this activity, we will use the decomposition reaction of calcium carbonate to produce carbon dioxide and calcium oxide. CaCO 3 CO 2 + CaO 2. Stick marbles together to represent the reactants and put these on one side of your table. In this example you may for example join one red marble (calcium), one green marble (carbon) and three yellow marbles (oxygen) together to form the molecule calcium carbonate (CaCO 3 ). 3. Leaving your reactants on the table, use marbles to make the product molecules and place these on the other side of the table. 4. Now count the number of atoms on each side of the table. What do you notice? 5. Observe whether there is any difference between the molecules in the reactants and the molecules in the products. Discussion You should have noticed that the number of atoms in the reactants is the same as the number of atoms in the product. The number of atoms is conserved during the reaction. However, you will also see that the molecules in the reactants and products is not the same. The arrangement of atoms is not conserved during the reaction. 11.5 Law of constant composition In any given chemical compound, the elements always combine in the same proportion with each other. This is the law of constant proportions . The law of constant composition says that, in any particular chemical compound, all samples of that compound will be made up of the same elements in the same proportion or ratio. For example, any water molecule is always made up of two hydrogen atoms and one oxygen atom in a 2:1 ratio. If we look at the relative masses of oxygen and hydrogen in a water molecule, we see that 94% of the mass of a water molecule is accounted for by oxygen, and the remaining 6% is the mass of hydrogen. This mass proportion will be the same for any water molecule. This does not mean that hydrogen and oxygen always combine in a 2:1 ratio to form H 2 O. Multiple proportions are possible. For example, hydrogen and oxygen may combine in differ- ent proportions to form H 2 O 2 rather than H 2 O. In H 2 O 2 , the H:O ratio is 1:1 and the mass ratio of hydrogen to oxygen is 1:16. This will be the same for any molecule of hydrogen peroxide. 11.6 Volume relationships in gases In a chemical reaction between gases, the relative volumes of the gases in the reaction are present in a ratio of small whole numbers if all the gases are at the same temperature and pressure. This relationship is also known as Gay-Lussac’s Law .
Image of page 233
Image of page 234
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern