Delay time trip input active to PWM Hi Z 20 ns 6102 Trip Zone Input Timing A TZ

Delay time trip input active to pwm hi z 20 ns 6102

This preview shows page 138 - 140 out of 200 pages.

Delay time, trip input active to PWM Hi-Z 20 ns 6.10.2 Trip-Zone Input Timing A. TZ - TZ1, TZ2, TZ3, TZ4, TZ5, TZ6 B. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software. Figure 6-15. PWM Hi-Z Characteristics Table 6-22. Trip-Zone Input Timing Requirements (1) MIN MAX UNIT t w(TZ) Pulse duration, TZx input low Asynchronous 1t c(SCO) cycles Synchronous 2t c(SCO) cycles With input qualifier 1t c(SCO) + t w(IQSW) cycles (1) For an explanation of the input qualifier parameters, see Table 6-13 . 138 Electrical Specifications Copyright © 2007–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320F28335 TMS320F28334 TMS320F28332 TMS320F28235 TMS320F28234 TMS320F28232
Image of page 138
TMS320F28335, TMS320F28334, TMS320F28332 TMS320F28235, TMS320F28234, TMS320F28232 SPRS439H–JUNE 2007–REVISED MARCH 2010 Table 6-23 shows the high-resolution PWM switching characteristics. Table 6-23. High-Resolution PWM Characteristics at SYSCLKOUT = (60 –150 MHz) MIN TYP MAX UNIT Micro Edge Positioning (MEP) step size (1) 150 310 ps (1) Maximum MEP step size is based on worst-case process, maximum temperature and maximum voltage. MEP step size will increase with low voltage and high temperature and decrease with voltage and cold temperature. Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per SYSCLKOUT period dynamically while the HRPWM is in operation. 6.10.3 Enhanced Capture (eCAP) Timing Table 6-24 shows the eCAP timing requirement and Table 6-25 shows the eCAP switching characteristics. Table 6-24. Enhanced Capture (eCAP) Timing Requirement (1) TEST CONDITIONS MIN MAX UNIT t w(CAP) Capture input pulse width Asynchronous 2t c(SCO) cycles Synchronous 2t c(SCO) cycles With input qualifier 1t c(SCO) + t w(IQSW) cycles (1) For an explanation of the input qualifier parameters, see Table 6-13 . Table 6-25. eCAP Switching Characteristics PARAMETER TEST CONDITIONS MIN MAX UNIT t w(APWM) Pulse duration, APWMx output high/low 20 ns 6.10.4 Enhanced Quadrature Encoder Pulse (eQEP) Timing Table 6-26 shows the eQEP timing requirement and Table 6-27 shows the eQEP switching characteristics. Table 6-26. Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements (1) TEST CONDITIONS MIN MAX UNIT t w(QEPP) QEP input period Asynchronous/synchronous 2t c(SCO) cycles With input qualifier 2[1t c(SCO) + t w(IQSW) ] cycles t w(INDEXH) QEP Index Input High time Asynchronous/synchronous 2t c(SCO) cycles With input qualifier 2t c(SCO) + t w(IQSW) cycles t w(INDEXL) QEP Index Input Low time Asynchronous/synchronous 2t c(SCO) cycles With input qualifier 2t c(SCO) + t w(IQSW) cycles t w(STROBH) QEP Strobe High time Asynchronous/synchronous 2t c(SCO) cycles With input qualifier 2t c(SCO) + t w(IQSW) cycles t w(STROBL) QEP Strobe Input Low time Asynchronous/synchronous 2t c(SCO) cycles With input qualifier 2t c(SCO) + t w(IQSW) cycles (1) For an explanation of the input qualifier parameters, see Table 6-13 .
Image of page 139
Image of page 140

You've reached the end of your free preview.

Want to read all 200 pages?

  • Summer '20
  • Serial Peripheral Interface Bus, Texas Instruments Incorporated, TMS320F28335

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

Stuck? We have tutors online 24/7 who can help you get unstuck.
A+ icon
Ask Expert Tutors You can ask You can ask You can ask (will expire )
Answers in as fast as 15 minutes