Courtesy httpapsumnedu tansteinbach kumar

Info icon This preview shows pages 22–29. Sign up to view the full content.

View Full Document Right Arrow Icon
Courtesy: http://aps.umn.edu
Image of page 22

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 23 Clustering Definition Given a set of data points, each having a set of attributes, and a similarity measure among them, find clusters such that Data points in one cluster are more similar to one another. Data points in separate clusters are less similar to one another. Similarity Measures: Euclidean Distance if attributes are continuous. Other Problem-specific Measures.
Image of page 23
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 24 Illustrating Clustering Euclidean Distance Based Clustering in 3-D space. Intracluster distances are minimized Intracluster distances are minimized Intercluster distances are maximized Intercluster distances are maximized
Image of page 24

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 25 Clustering: Application 1 Market Segmentation: Goal: subdivide a market into distinct subsets of customers where any subset may conceivably be selected as a market target to be reached with a distinct marketing mix. Approach: Collect different attributes of customers based on their geographical and lifestyle related information. Find clusters of similar customers. Measure the clustering quality by observing buying patterns of customers in same cluster vs. those from different clusters.
Image of page 25
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 26 Clustering: Application 2 Document Clustering: Goal: To find groups of documents that are similar to each other based on the important terms appearing in them. Approach: To identify frequently occurring terms in each document. Form a similarity measure based on the frequencies of different terms. Use it to cluster. Gain: Information Retrieval can utilize the clusters to relate a new document or search term to clustered documents.
Image of page 26

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 27 Illustrating Document Clustering Clustering Points: 3204 Articles of Los Angeles Times. Similarity Measure: How many words are common in these documents (after some word filtering). Category Total Articles Correctly Placed Financial 555 364 Foreign 341 260 National 273 36 Metro 943 746 Sports 738 573 Entertainment 354 278
Image of page 27
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 28 Clustering of S&P 500 Stock Data Discovered Clusters Industry Group 1 Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, Sun-DOWN Technology1-DOWN 2 Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, Computer-Assoc-DOWN,Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN Technology2-DOWN 3 Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN Financial-DOWN 4 Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, Schlumberger-UP
Image of page 28

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 29
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern