18 11 points previous answers holtlinalg1 51075

This preview shows page 15 - 16 out of 16 pages.

18.1/1 points |Previous AnswersHoltLinAlg1 5.1.075.Determine if the statement is true or false, and justify your answer.If the cofactors of anmatrixAare all nonzero, thenbut0.False. ConsiderA=. ThenC11= 1,C12=1,C21=1, andC22=1, but det(0.11A) =) = 0.) = 0.A) = 0..
19.1/1 points |Previous AnswersHoltLinAlg1 5.1.076.Determine if the statement is true or false, and justify your answer.IfAandBarematrices, thenTrue, by the distributive property of determinants.1000Solution or Explanationso).0 0False. ConsiderA=andB=. Then det(A)det(B) = 0, but det(AB) = 1.10001000A=1 00 0B=.0001det(A) = 0,det(B) = 0,det(A)det(B) = 0,det(AB) = det= 1.1 00 1
End of preview. Want to read all 16 pages?

Upload your study docs or become a

Course Hero member to access this document

Term
Fall
Professor
N/A
Tags
Math, Linear Algebra, Algebra, Characteristic polynomial, Invertible matrix, Triangular matrix, Det

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture