3. Solve the following two dimensional maximization problems subject to the linear constraint
w
=
p
1
x
1
+
p
2
x
2
,
p
1
, p
2
>
0. Sketch contour lines of the objective function and the constraint set.
Then compute the change in
x
1
with respect to
p
2
, and a change in
x
1
with respect to
w
. Assume
α
1
> α
2
>
0. Foriandii, when do the SOSCs hold?
=
p
1
p
2
x
1
x
1
=
w

0
−
p
1
−
p
2
−
p
1
α
1
(
α
1
−
1)
x
α
1
−
2
1
x
α
2
2
α
1
α
2
x
α
1
−
1
1
x
α
2
−
1
2
(1)
So a set of sufficient conditions to ensure this are that 0
< α
1
<
1 and 0
< α
2
<
1, so that the
left-hand side is positive but the right-hand side is negative.
ii. Stone-Geary
f
(
x
) = (
x
1
−
γ
1
)
α
1
(
x
2
−
γ
2
)
α
2
The Lagrangian is
L
(
x, λ
) = (
x
1
−
γ
1
)
α
1
(
x
2
−
γ
2
)
α
2
−
λ
(
p
1
x
1
+
p
2
x
2
−
w
)
The FONCs are
α
1
(
x
1
−
γ
1
)
α
1
−
1
(
x
2
−
γ
2
)
α
2
−
λp
1
= 0
α
2
(
x
1
−
γ
1
)
α
1
(
x
2
−
γ
2
)
α
2
−
1
−
λp
2
= 0
−
(
p
1
x
1
+
p
2
x
2
−
w
) = 0
The first two equations imply
α
1
(
x
2
−
γ
2
)
α
2
(
x
1
−
γ
1
)
=
p
1
p
2
4

Solving for
x
2
yields
x
2
=
p
1
α
1
p
2
α
2
(
x
1
−
γ
1
) +
γ
2
Substituting this into the constraint yields
p
1
x
1
+
p
1
α
1
α
2
(
x
1
−
γ
1
) +
p
2
γ
2
=
w
Solving for
x
1
yields
x
∗
1
=
α
1
w
−
p
2
α
1
γ
2
+
p
1
α
2
γ
1
p
1
(
α
1
+
α
2
)
x
∗
2
=
α
2
w
−
p
1
α
2
γ
1
+
p
2
α
1
γ
2
p
2
(
α
2
+
α
1
)
and the comparative statics are
∂x
∗
1
∂w
=
α
1
p
1
(
α
1
+
α
2
)
>
0
∂x
∗
1
∂p
2
=
−
α
1
γ
2
p
1
(
α
1
+
α
2
)
<
0
The bordered Hessian is
0
−
p
1


You've reached the end of your free preview.
Want to read all 8 pages?
- Fall '12
- Johnson
- p1