So 3 1 9 1 0 0 1 1 4 0 1 0 4 4 20 0 0 1 13 r 1 r 2 r

This preview shows page 2 - 6 out of 11 pages.

3 1 9 1 1 4 4 4 20
so , 3 1 9 1 0 0 1 1 4 0 1 0 4 4 20 0 0 1 ( 1/3) R 1 + R 2 R 2 ( 4 /3) R 1 + R 3 R 3 ~ 3 1 9 1 0 0 0 1 1 0 0 8 0 1 2 3 1 3 8 3 4 3 4 R 2 + R 3 R 3 ~ 3 1 9 1 0 0 0 1 1 0 0 0 4 0 4 1 2 3 1 3 ( 1/ 4 ) R 3 + R 2 R 2 ( 9/ 4 ) R 3 + R 1 R 1 ~ 3 1 0 1 9 0 0 2 0 0 4 0 4 1 9 4 2 3 1 3 1 4 ( 3/2) R 2 + R 1 R 1 ~ 3 0 0 6 0 0 2 0 0 4 0 4 1 3 2 15 8 2 3 1 3 1 4 (1/3) R 1 R 1 ( 3/2) R 2 R 2 (1/ 4 ) R 3 R 3 ~ 1 0 0 2 0 1 0 3 0 0 1 0 1 1 2 5 8 1 2 3 8 1 4 = . 3 1 9 1 1 4 4 4 20 1 2 3 0 1 1 2 5 8 1 2 3 8 1 4
4. 3/3 points | Previous Answers HoltLinAlg1 3.3.015. Use an augmented matrix and row operations to find the inverse of the given matrix, if it exists. (If the inverse does not exist, enter DNE into any cell.) 3 2 1 2 1 1 . 7 3 1 1
5. 3/3 points | Previous Answers HoltLinAlg1 3.3.024. Determine if the given linear transformation of T is invertible, and if so, find (HINT: Start by finding the matrix A such that If the inverse does not exist, enter DNE into all cells.) . 3 3 , . 3 3 2 1 . 1 1 1 . 3

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture