slides-chap6A-communication-soft

Ex ante avant quil connaisse son type a un equilibre

Info icon This preview shows pages 151–159. Sign up to view the full content.

View Full Document Right Arrow Icon
ex-ante , avant qu’il connaisse son type) ` a un ´ equilibre n -s´ eparateur : EU 1 = E bracketleftBig [ σ 2 ( σ 1 ( t )) t b ] 2 bracketrightBig
Image of page 151

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Transmission strat´ egique de l’information / Information non certifiable Utilit´ e esp´ er´ ee moyenne de l’´ emetteur (donc ex-ante , avant qu’il connaisse son type) ` a un ´ equilibre n -s´ eparateur : EU 1 = E bracketleftBig [ σ 2 ( σ 1 ( t )) t b ] 2 bracketrightBig = n summationdisplay k =1 integraldisplay x k x k - 1 bracketleftbigg x k 1 + x k 2 t b bracketrightbigg 2 dt
Image of page 152
Transmission strat´ egique de l’information / Information non certifiable Utilit´ e esp´ er´ ee moyenne de l’´ emetteur (donc ex-ante , avant qu’il connaisse son type) ` a un ´ equilibre n -s´ eparateur : EU 1 = E bracketleftBig [ σ 2 ( σ 1 ( t )) t b ] 2 bracketrightBig = n summationdisplay k =1 integraldisplay x k x k - 1 bracketleftbigg x k 1 + x k 2 t b bracketrightbigg 2 dt = n summationdisplay k =1 parenleftBig integraldisplay x k x k - 1 bracketleftbigg x k 1 + x k 2 t bracketrightbigg 2 dt + integraldisplay x k x k - 1 b 2 dt 2 b integraldisplay x k x k - 1 bracketleftbigg x k 1 + x k 2 t bracketrightbigg dt bracehtipupleft bracehtipdownrightbracehtipdownleft bracehtipupright 0 parenrightBig
Image of page 153

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Transmission strat´ egique de l’information / Information non certifiable Utilit´ e esp´ er´ ee moyenne de l’´ emetteur (donc ex-ante , avant qu’il connaisse son type) ` a un ´ equilibre n -s´ eparateur : EU 1 = E bracketleftBig [ σ 2 ( σ 1 ( t )) t b ] 2 bracketrightBig = n summationdisplay k =1 integraldisplay x k x k - 1 bracketleftbigg x k 1 + x k 2 t b bracketrightbigg 2 dt = n summationdisplay k =1 parenleftBig integraldisplay x k x k - 1 bracketleftbigg x k 1 + x k 2 t bracketrightbigg 2 dt + integraldisplay x k x k - 1 b 2 dt 2 b integraldisplay x k x k - 1 bracketleftbigg x k 1 + x k 2 t bracketrightbigg dt bracehtipupleft bracehtipdownrightbracehtipdownleft bracehtipupright 0 parenrightBig donc le paiement moyen de l’´ emetteur EU 1 = EU 2 b 2 est aussi d´ ecroissant avec b ` a n fix´ e
Image of page 154
Transmission strat´ egique de l’information / Information non certifiable Quel est l’´ equilibre le plus efficace ?
Image of page 155

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Transmission strat´ egique de l’information / Information non certifiable Quel est l’´ equilibre le plus efficace ? On compare EU 2 (ou EU 1 ) ` a un ´ equilibre n -s´ eparateur ` a EU 2 (ou EU 1 ) ` a un ´ equilibre ( n 1) -s´ eparateur :
Image of page 156
Transmission strat´ egique de l’information / Information non certifiable Quel est l’´ equilibre le plus efficace ? On compare EU 2 (ou EU 1 ) ` a un ´ equilibre n -s´ eparateur ` a EU 2 (ou EU 1 ) ` a un ´ equilibre ( n 1) -s´ eparateur : Apr` es quelques calculs on trouve, pour tout n 1 , EU 2 [ n ] EU 2 [ n 1] > 0 si et seulement si b < 1 2 n ( n 1)
Image of page 157

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Transmission strat´ egique de l’information / Information non certifiable Quel est l’´ equilibre le plus efficace ?
Image of page 158
Image of page 159
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern