tan 1 sec x t y t 6 3 2 3 x t t y t 13 3cos 3sin x t y t 19 3 2 x t y t 7 2 3 x

Tan 1 sec x t y t 6 3 2 3 x t t y t 13 3cos 3sin x t

This preview shows page 1 - 2 out of 2 pages.

tan 1 sec x t y t    6) 3 2 3 x t t y t 13) 3cos 3sin x t y t  19) 3 2 x t y t 7) 2 3 x t y t 20) cos sin 2 x t y t II. Eliminate the parameter to convert these to rectangular form. What are these graphs?
Image of page 1
21) cos sin x h r t y k r t 22) cos sin x h a t y k b t 23) sec tan x h a t y k b t III. Without graphing, can you describe each of these graphs? (Be SPECIFIC! What conic is it? Center? Horizontal or vertical? Lengths of major and minor axes?) 24) 6sin 6cos x t y t 28) 6cos 8 3sin 2 x t y t 25) 6cos 4 6sin 2 x t y t 29) 4sec 4tan x t y t 26) 3cos 6sin x t y t 30) 4tan 4sec x t y t 27) 6cos 3sin x t y t 31) 4tan 6 6sec 2 x t y t IV. Application In golf, each golf club has a different club face angle and a different length. The motion of a golf ball can be modeled by a horizontal and a vertical vector. The vectors are described by using the general parametric equations below: 0 2 0 cos sin 16 x v t y v t t where 0 v initial velocity and angle of projection For a Wilson 2-iron, the initial velocity is 175 ft/sec and the club face angle is 21°. Write the equations that model the golf swing. Hint: mode must be degrees. Try this window: [0, 6, .1, -10, 700, 50, -10, 100, 50] For a 6-iron, 0 v 135 and 35°. Write the equations. Could a 6-iron shot clear a 70-foot palm tree 100 feet from the golfer? Can you get the calculator to draw a vertical line that represents the palm tree on the same viewscreen?
Image of page 2

You've reached the end of your free preview.

Want to read both pages?

  • Winter '15
  • Aisha
  • Parametric equation

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

Stuck? We have tutors online 24/7 who can help you get unstuck.
A+ icon
Ask Expert Tutors You can ask You can ask You can ask (will expire )
Answers in as fast as 15 minutes