The Elegant Universe - Brian Green

The quarks and antiquarks have electric charges of

Info iconThis preview shows pages 103–104. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: The quarks and antiquarks have electric charges of one-third or two-thirds, and their negatives, while the other particles have electric charges of zero, one, or negative one. Combinations of these particles account for all known matter in the universe. In string theory, however, it is possible for there to be resonant vibrational patterns corresponding to particles of significantly different electric charges. For instance, the electric charge of a particle can take on exotic fractional values such as 1 / 5 , 1 / 11 , 1 / 13 , or 1 / 53 , among a variety of other possibilities. These unusual charges can arise if the curled-up dimensions have a certain geometrical property: Holes with the peculiar property that strings encircling them can disentangle themselves only by wrapping around a specified number of times. 84 The details are not particularly important, but it turns out that the number of windings required to get disentangled manifests itself in the allowed patterns of vibration by determining the denominator of the fractional charges. Some Calabi-Yau shapes have this geometrical property while others do not, and for this reason the possibility of unusual electric-charge fractions is not as generic as the existence of superpartner particles. On the other hand, whereas the prediction of superpartners is not a unique property of string theory, decades of experience have shown that there is no compelling reason for such exotic electric-charge fractions to exist in any point-particle theory. They can be forced into a point-particle theory, but doing so would be as natural as the proverbial bull in a china shop. Their possible emergence from simple geometrical properties that the extra dimensions can have makes these unusual electric charges a natural experimental signature for string theory. As with the situation with superpartners, no such exotically charged particles have ever been observed, and our understanding of string theory does not allow for a definitive prediction of their masses should the extra dimensions have the correct properties to generate them. One explanation for not seeing them, again, is that if they do exist, their masses must be beyond our present technological means—in fact, it is likely that their masses would be on the order of the Planck mass. But should a future experiment come across such exotic electric charges, it would constitute very strong evidence for string theory. Some Longer Shots There are yet other ways in which evidence for string theory might be found. For example, Witten has pointed out the long-shot possibility that astronomers might one day see a direct signature of string theory in the data they collect from observing the heavens. As encountered in Chapter 6, the size of a string is typically the Planck length, but strings that are more energetic can grow substantially larger. The energy of the big bang, in fact, would have been high enough to produce a few macroscopically large strings that, through cosmic expansion, might have grown to astronomical scales. We can imagine that now or sometime in the future, a string of this sort might sweep across the night sky, leaving an unmistakable and measurable imprint on data collected...
View Full Document

{[ snackBarMessage ]}

Page103 / 189

The quarks and antiquarks have electric charges of...

This preview shows document pages 103 - 104. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online