Use models and calculators as thinking tools
–
these tools makes
learning interesting and simple at times. Not all learners have fast
thinking process, so using models and calculators helps learners to
think out of the box and be at the same pace with other learners.
Observing similar models outside the class, they are able to apply maths
concepts and teach others.
Encourage discourse and writing
–
considering different ways in which
learners learn, it is important to have time for discourse because some
learners express themselves well through discussions and they learn
more easily. In another way, some prefer just writing their opinion
down and especially with maths it can be very confusing sometimes
without writing down and one can lose the logic. At the end of the lesson
all learners must learn effectively.
3.1. A problem solving approach to an activity
3.1.1. Explain the pattern of your extended shape.
The pattern starts with one square and increases by two squares from frame
to frame, representing the sequence 1; 2; 2; 1
3.1.2. Definitions of the following terms:
An edge
–
is a line segment that joins two nodes or vertices of a certain
shape.
The perimeter
–
is the distance around a two-dimensional shape.
A square
–
is a regular quadrilateral, which means that it has four equal
sides and four equal angles (90-degree angles).
The area
–
is the amount of space inside the boundary of a flat (2-
dimensional) object or surface of a solid (3-dimensional) object.

3.2. Different levels of cognitive demands in tasks
Case Study
If a grown man and a small boy sit on opposite ends of a see-saw, what happens?
Would changing or moving the weight on one end of the seesaw affect the
balance?
You’ll find
out as you do this experiment
.
YOU WILL NEED: a pencil, a 30 cm ruler, nine 5 cent pieces
Step 1
:
On a flat desk, try to balance a ruler across a pencil near the 15cm mark.
Step 2
:
Stack two 5c pieces on the ruler so that they are centred at the 5 cm mark
to the right of the pencil. You may need to tape them in place.
Step 3
:
Place one 5c piece on the left side of the ruler so that it balances the two on the
right hand side. Be sure that the ruler stays centred over the pencil. How far from the
pencil is the one 5c piece?
Step 4
:
Repeat step 3 for two, three, four and six 5c pieces on the left side of the
ruler. Measure to the nearest 1 mm. Copy and complete the table.
Left
side
Right
side
n
umber of 5c
Distance
n
umber of 5c
Distance
1
2
5
2
2
5
3
2
5
4
2
5
6
2
5
Step 5
:
As you increase the number of 5c pieces on the left hand side how does the
distance change? What relationship do you notice?
Step 6
: Make a new table and repeat the investigation with three 5-cent pieces
stacked to the right of the centre. Does the same relationship hold true?

#### You've reached the end of your free preview.

Want to read all 18 pages?

- Spring '11
- Park
- Addition, Subtraction, Negative and non-negative numbers