1 16 5 1 4 5 442 5 2 2 u 16 5 4 5 x y x y x y x y 4 4 12 3 2 8 16 5 4 5 x y x y

1 16 5 1 4 5 442 5 2 2 u 16 5 4 5 x y x y x y x y 4 4

This preview shows page 251 - 254 out of 640 pages.

= 1 16 5 1 4 5 442 5 2 2 u 16 5 4 5 , x y x y x y x y + = = = = = 4 0 4 12 0 3 2 8 0 16 5 4 5 x y x y = + = 2 2 1 3 3 2 8 0 x y x y = = 3 1 4 4 12 0 5 SOLUCIONARIO
Image of page 251
252 Calculamos el punto medio, B ' , del lado AC : Hallamos la mediana que pasa por BB ' : Determinamos el punto medio, C ' , del lado BA : Calculamos la mediana que pasa por CC ' : Hallamos el punto de corte de las rectas: Dados los puntos P ( x 1 , y 1 ), Q ( x 2 , y 2 ) y T ( x 3 , y 3 ), determinamos el punto medio, P ' , del lado QT : Hallamos la mediana que pasa por PP ' : Calculamos el punto medio, Q ' , del lado PT : Determinamos la mediana que pasa por QQ ' : Hallamos la intersección de las rectas: Sustituyendo, resulta que: x = x x x 1 2 3 3 + + ( )( ) ( )( y y x x x y y y x y y x x + + = + 1 2 3 1 2 3 1 1 2 1 3 2 2 + = + + 2 2 3 2 1 3 2 2 1 2 3 x y y y x y y y y ) x x x x x y y y y y x x x x x y + = + + = 1 2 3 1 1 2 3 1 2 1 3 2 2 2 2 y y y y x y y x x x 2 1 3 2 1 2 3 2 2 + = + ( )( 1 2 3 1 1 2 1 3 2 1 3 2 2 2 2 ) ( )( ) y y y x x y y x x x y y y + = + + x 2 x x x x x y y y y y x x x x x y + = + + = 2 1 3 2 2 1 3 2 2 1 3 2 2 2 2 + y y y y 2 1 3 2 2 Q x x y y ' 1 3 1 3 2 2 + + , x x x x x y y y y y x x x x x y + = + + = 1 2 3 1 1 2 3 1 1 2 3 1 2 2 2 + y y y y 1 2 3 1 2 P x x y y ' 2 3 2 3 2 2 + + , 15 9 6 0 3 12 9 0 12 3 15 0 x y x y x y x + + = + = + = = − = 1 1 y El baricentro es ( 1, 1) x y x y + = + + = 2 3 3 12 12 3 15 0 C ' 1 2 3 , x y x y = + = 3 12 3 3 12 9 0 B ' 3 3 2 , Geometría analítica
Image of page 252
253 PARA FINALIZAR… Calcula el ángulo que deben formar dos vectores, a y b , para que sus módulos coincidan con el módulo de su diferencia, a b : a = b = a b . ¿Y para que coincidan con el módulo de su suma, a + b ? a = ( x , y ) b = ( z , t ) a b = ( x z , y t ) a b a b Igualando, resulta que: Calculamos el ángulo que forman: Para que los módulos de dos vectores del mismo módulo coincidan con su diferencia deben formar un ángulo de 60°. a b Igualando, tenemos que: Calculamos el ángulo que forman: Para que los módulos de dos vectores del mismo módulo coincidan con su suma deben formar un ángulo de 120°. cos xz yt x y z t α α = + + + = − = 2 2 2 2 1 2 120 · ° x y x z xz y t yt z t xz yt 2 2 2 2 2 2 2 2 2 2 2 + = + + + + + + = + = + = + + + ( ) ( ) x z y t x z xz y t yt 2 2 2 2 2 2 2 2 cos α α = + + + = = xz yt x y z t 2 2 2 2 1 2 60 · ° x y x z xz y t yt z t xz yt 2 2 2 2 2 2 2 2 2 2 2 + = + + + + = + = + = + + + ( ) ( ) x z y t x z xz y t yt 2 2 2 2 2 2 2 2 = + z t 2 2 = + x y 2 2 a b a a + b a b b
Image of page 253
Image of page 254

You've reached the end of your free preview.

Want to read all 640 pages?

  • Winter '15
  • palmerdev

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern

Stuck? We have tutors online 24/7 who can help you get unstuck.
A+ icon
Ask Expert Tutors You can ask You can ask ( soon) You can ask (will expire )
Answers in as fast as 15 minutes
A+ icon
Ask Expert Tutors