241Final-S11

# 2 i if γ is the ellipse x 2 y 2 4 = 1 traced

This preview shows pages 2–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2 I) If γ is the ellipse x 2 + y 2 4 = 1, traced counterclockwise, evaluate H γ e z z 2 ( z- 2) dz . a) 5 πi 2 b)- 3 πi 2 c) d) 2 πi e)- 4 πi II) If H ( x ) =- 1 for- π ≤ x < 0 and H ( x ) = 1 for 0 ≤ x < π and if we extend H to be 2 π periodic, then when we expand H ( x ) in a complex Fourier Series ∑ ∞ k =-∞ c k e ikx , we find the sum c- 2 + c- 1 + c o equals a) 2 πi b) 3 πi c) i π d) 2 i π e)- 1 III) The complex number ( iπ ) i may have many values. One of its val- ues is: a) e- π 2 ( cos ( logπ ) + i sin ( logπ )) b) logπ + i logπ c) e π ( cos ( logπ ) + i sin ( logπ )) d) cos ( logπ ) + i sin ( logπ ) e) e- π ( cos ( e π ) + i sin ( e π )). 3 IV) For the Sturm-Liouville Problem y 00 + λy = 0 , y (0) = y ( π ) = 0, the eigenvalues are: a) λ = k 2 , k = 1 , 2 , 3 , ··· b) λ = (2 k +1) 2 4 , k = 1 , 2 , 3 , ··· c) λ = k, k = 1 , 2 , 3 , ··· d) λ = k 2 2 , k = 1 , 2 , 3 , ··· e) λ = (2 k + 1) 2 , k = 1 , 2 , 3 , ··· . V) Consider the function f ( x ) = | x | for- π < x ≤ π . We extend f to be 2 π periodic and compute its Fourier Series a o 2 + ∑ ∞ k =1 a k cos ( kx ) + b k sin ( kx ). Then the sum a o + a 1 + b 1 + a 2 + b 2 + a 3 + b 3 is: a) π 2 2 b) 3 π 2- 10 3 π c) π 2- 8 π d) 7 π 2- 22 7 π e) 9 π 2- 40 9 π ....
View Full Document

{[ snackBarMessage ]}

### Page2 / 10

2 I If γ is the ellipse x 2 y 2 4 = 1 traced...

This preview shows document pages 2 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online