Heimadaemi_09_lausnir

Bracketleftbigg 2 π parenleftbigg f c δf 2

Info icon This preview shows pages 7–8. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: bracketleftbigg 2 π parenleftbigg f c- δf 2 parenrightbigg t bracketrightbigg , ≤ t ≤ T b Óg s 1 ( t ) = A c cos bracketleftbigg 2 π parenleftbigg f c + δf 2 parenrightbigg t bracketrightbigg , ≤ t ≤ T b a ýÒ iðað fÝ ÐgÒ i×ØÙðÙ ÐÐ cÓ ÖÖe Ða Ø iÓÒ cÓec ieÒ Ø ρ Ñ eÖk jaÒÒa s ( t ) Óg s 1 ( t ) ×k iÐg Öe iÒdÙ Ö ×eÑ ρ = integraltext T b s ( t ) s 1 ( t ) dt radicalBig integraltext T b s 2 ( t ) dt radicalBig integraltext T b s 2 1 ( t ) dt 7 Ñ Ò Ðga ×eÑ ρ ≈ × iÒ c (2 δfT b ) e f f c greatermuch δf b ÚaðeÖÑ iÒÒ ×Øag iÐd i δf þaÒÒ igaðÑ eÖk iÒ s ( t ) Óg s 1 ( t ) ×éÙhÓ ÖÒ ÖéØØ Ó ÖØhÓgÓÒa Ð hÚÓ ÖØ aÒÒað? c ÚaðaÑ ó ØÙÒa Öað feÖðÒÓ Ø fÖ iÖ×éÖÙÔÔ Ðý × iÒga ÖÒa Öú Øb Ðið?ÚeÖ jiÖeÖÙkÓ ×Ø iÖþ e iÖÖa Ö að feÖða ÖÑ iðaðÚ iðað ÖaFað feÖð ×eÑ ÒÓ Øa Ö×ØÖÖa δf ? aÙ ×Ò : a ö fÙÑ ρ = integraltext T b s ( t ) s 1 ( t ) dt radicalBig integraltext T b s 2 ( t ) dt radicalBig integraltext T b s 2 1 ( t ) dt = integraltext T b cos bracketleftbig 2 π ( f c- δf 2 ) t bracketrightbig cos bracketleftbig 2 π ( f c + δf 2 ) t bracketrightbig dt radicalBig integraltext T b cos 2 bracketleftbig 2 π ( f c- δf 2 ) t bracketrightbig dt radicalBig integraltext T b cos 2 bracketleftbig 2 π ( f c + δf 2 ) t bracketrightbig dt a Ö×eÑ integraltext T b cos 2 ( θ ( t )) dt = T b / 2 Óg cos( α ) cos( β ) = 1 2 [cos( α- β ) + cos( α + β )] fÙÑ Ú ið ρ = 1 T b integraldisplay T b [cos(2 πδft ) + cos(4 πf c t )] dt = 1 2 πT b bracketleftbigg sin(2 πδfT b ) δf + sin(4 πf c T b ) 2 f c bracketrightbigg úeÖ f c greatermuch δf ×ÚÓ× íða Ö iÐiðÙ Ö iÒÒeÖÑ ik ÐÙÑ iÒÒ ieÒ ×fÝ ÖÖ iiðg eØÙÑ þÚ íÒ Ðgað fÝ ÐgÒ i×ØÙðÙ ÐiÒÒ ×eÑ ρ ≈ sin(2 πδfT b ) 2 πδfT b = × iÒ c (2 δfT b ) ×eÑ eÖþað ×eÑ Ú iðÚ iÐdÙÑ ×ýÒa b eÖk iÒØÚöeÖÙhÓ ÖÒ ÖéØØþ ega Ö ρ = 0 iÒÒ ×Øa δf ×eÑ g eÖ iÖÑ eÖk iÒhÓ ÖÒ ÖéØØeÖþþ ega Ö 2 δfT b = 1 þaðeÖ δf = 1 2 T b c eØØab iÐÑ iÐÐiØ íðÒaÒÒaeÖÒÓ Øað fÝ Ö iÖiÒ iÑ ÙÑ h ifØeÝ iÒg Ñ ó ØÙÒ ÒÓ Øa ÖÑ iÒÒ ibaÒdÚ ídd eÒað Öa ÖFað feÖð iÖ×eÑ ÒÓ Øa ×ØÖÖa δf 8...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern