1.10.4 In this problem you are to design a simple causal real discrete-time LTI system with the following properties:(a) The system should kill the signals (-1)nand cos(0.5⇡n)(b) The system should have unity dc gain. That is,Hf(0) = 1.For the system you design:(a) Find the di↵erence equation to implement the system.(b) Sketch the impulse response of the system.(c) Roughly sketch the frequency response magnitude|Hf(!)|. Clearly show the nulls of the frequency response.1.10.4)
Solution
186

−
π
−
0.5
π
0
0.5
π
π
0
5
10
15
FREQUENCY RESPONSE 2
ω
−
π
−
0.5
π
0
0.5
π
π
0
2
4
6
8
FREQUENCY RESPONSE 4
ω
−
π
−
0.5
π
0
0.5
π
π
0
2
4
6
8
FREQUENCY RESPONSE 3
ω
−
π
−
0.5
π
0
0.5
π
π
0
2
4
6
FREQUENCY RESPONSE 1
ω
−
1
−
0.5
0
0.5
1
−
1
−
0.5
0
0.5
1
2
ZERO
−
POLE DIAGRAM 3
−
1
−
0.5
0
0.5
1
−
1
−
0.5
0
0.5
1
2
ZERO
−
POLE DIAGRAM 1
−
1
−
0.5
0
0.5
1
−
1
−
0.5
0
0.5
1
ZERO
−
POLE DIAGRAM 2
−
1
−
0.5
0
0.5
1
−
1
−
0.5
0
0.5
1
ZERO
−
POLE DIAGRAM 4
1.11.1)
Solution
IMPULSE RESPONSE
FREQUENCY RESPONSE
POLE-ZERO DIAGRAM
1
2
3
2
4
1
3
3
2
4
1
4
190

1.12.4
Feedback LoopConsider the following connection of two discrete-time LTI systems.--h2(n)-h1(n)6+iYou are told thath1(n) =δ(n) +δ(n-1),h2(n) =12δ(n-1).(a) Find the impulse responseh(n) of the total system.(b) Sketchh1(n),h2(n), andh(n).(c) Find the di↵erence equation describing the total system.1.12.4)

0
10
20
−
0.5
0
0.5
1
1.5
2
h
1
(n) [IMPULSE RESPONSE]
n
0
10
20
−
0.5
0
0.5
1
1.5
2
h
2


You've reached the end of your free preview.
Want to read all 16 pages?
- Fall '14
- Digital Signal Processing, Signal Processing, LTI system theory, Impulse response