{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Anomalous Hall effect in epitaxially grown ferroemagnetic FeGa-Fe3Ga hybrid structure- evidence of

We suggest that the observed ahe in fe 3 gafe ga can

Info iconThis preview shows page 4. Sign up to view the full content.

View Full Document Right Arrow Icon
We suggest that the observed AHE in Fe 3 Ga/Fe-Ga can be cor- related with the spin-dependent skew scattering mechanism. The observation of anomalous Hall effect was reported in ferro- magnetic clusters in diluted magnetic semiconductors/oxides, which were evident for spin carrier polarization. Jamet et al. suggested that a large spin polarization of hole gas was induced by the magnetization of the nanocolumns Mn 2 Ge embedded in Mn:Ge. 9 In addition, the AHE was also obtained in Co clusters embedded in Co-(La,Sr)TiO 3 , causing the magnetic clusters to polarize nearby electrons. 29 Until now, no direct evidence of spin carrier polarization by clusters was reported, even there were some models that tried to explain the observation of AHE in clusters embedded. 9 , 29 , 30 The out-of-plane and in-plane magnetic anisotropies were obtained for Fe 3 Ga/Fe-Ga hybrid structure and Fe-Ga single crystal epitaxial thin films, respectively. The clear trend of saturation Hall resistance was shown for Fe 3 Ga/Fe-Ga, while it slightly exhibited for single crystal Fe-Ga epitaxial thin film, which is solid evidence for spin polarization by local magnetic clusters. This result promised to open new way to polarize spin carrier using local magnetic clusters to overcome the diluted magnetic semiconductors/oxide areas. This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant No. 2011-0010143) and by Priority Research Centers Program (Grant No. 2009- 0093818). The authors wish to thank Prof. Phan Manh Huong for valuable discussions. 1 N. Nagaosa et al ., Rev. Mod. Phys. 82 , 1539 (2010). 2 H. Ohno and F. Matsukura, Solid State Commun. 117 , 179 (2001). 3 A. M. Nazmul et al ., Phys. Rev. B 67 , 241308R (2003). 4 F. Matsukura et al ., Physica E 12 , 351 (2002). 5 H. Luo et al ., Physica E 20 , 338 (2004). 6 P. Mahadevan and A. Zunger, Phys. Rev. B 68 , 075202 (2003). 7 P. Xiong et al ., Phys. Rev. Lett. 69 , 3220 (1992). 8 A. B. Pakhomov and X. Yan, Solid State Commun. 99 , 139 (1996). 9 M. Jamet et al ., Nature Mater. 5 , 653 (2006). 10 H. Sato et al ., J. Magn. Magn. Mater. 156 , 247 (1996). 11 M. V. Berry, Proc. R. Soc. London A 392 , 45 (1984). 12 E. M. Pugh, Phys. Rev. 36 , 1503 (1930). 13 B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials (Wiley, New Jersey, 2009). 14 N. S. Akulov, Z. Phys. 69 , 822 (1931). 15 J. F. Herbst and F. E. Pinkerton, Phys. Rev. B 57 , 10733 (1998). 16 R. Gans, Ann. Phys. 15 , 28 (1932). 17 T. Holstein and H. Primakoff, Phys. Rev. 59 , 388 (1941). 18 H. Zhang et al ., J. Magn. Magn. Mater. 322 , 2375 (2010). 19 T. Holstein and H. Primakoff, Phys. Rev. 58 , 1098 (1940). 20 A. Arrott, J. Appl. Phys. 34 , 1108 (1963). 21 A. Aharoni, Phys. Rev. 132 , 105 (1963). 22 Yu. I. Man’kov, Phys. Solid State 41 , 582 (1999). 23 S. V. Vonsovskii, Magnetism (Wiley, NY, 1974 [Nauka, Moscow, 1971]), p. 838. 24 V. A. Ignatchenko et al ., Sov. Phys. JETP 55 , 878 (1982). 25 D. A. Tuan et al ., J. Appl. Phys. 111 , 07C517 (2012). 26 O. M. J. van’t Erve et al ., Appl. Phys. Lett. 91 , 122515 (2007). 27 B. D. Schultz et al ., Appl. Phys. Lett. 92 , 091914 (2008). 28 R. Wu, J. Appl. Phys. 91 , 7358 (2002). 29 S. X. Zhang et al ., Phys. Rev. B 76 , 085323 (2007).
Background image of page 4
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}