This preview shows page 114 - 120 out of 128 pages.
114
Chapter 6. Point EstimationSTAT 155ExampleSupposeX1,· · ·, Xnis a random sample from a Bernoulli distri-bution with parameterp. That is, eachXitakes the value 1 with probabilitypand the value 0 with probability1-p. Find the moment estimator ofp. Isthe moment estimator unbiased?ExampleSupposeX1,· · ·, Xnis a random sample from a normal distribu-tion with parametersμandσ. Find the moment estimators ofμandσ2. Arethey unbiased?115
Chapter 6. Point EstimationSTAT 155Maximum Likelihood EstimationLetX1,· · ·, Xnhave joint pmf or pdff(x1,· · ·, xn;θ1,· · ·, θm) =f(x1,· · ·, xn;Θ)where the parametersΘ={θ1,· · ·, θm}have unknown values.Whenx1,· · ·, xnare the observed sample values andL=f(x1,· · ·, xn;Θ)is regarded as a function ofΘ={θ1,· · ·, θm},it is called thelikelihood function.Themaximum likelihood estimates (mle’s)ˆΘ={ˆθ1,· · ·,ˆθm}are those values of theθi’s that maximize the likelihood func-tion.When theXi’s are substituted in place of thexi’s, themaximumlikelihood estimatorsresult.The likelihood function tells us how likely the observed sam-ple is as a function of the possible parameter values. Maxi-mizing the likelihood gives the parameter values for which theobserved sample is most likely to have been generated — thatis, the parameter values that “agree most closely” with the ob-served data.116
Chapter 6. Point EstimationSTAT 155Notes on finding the mle1. IfX1,· · ·, Xnis a random sample, i.e.Xi’s are independentand identically distributed (iid). Because of independence,the likelihood functionLis a product of the individual pmf’sor pdf’s.2. FindingΘto maximizeln(L)is equivalent to maximizingLitself. In statistics, taking the logarithm frequently changesa product to a sum, which is easier to work with.ln(xy) = ln(x) + ln(y)ln(x/y) = ln(x)-ln(y)ln(xy) =yln(x)3. To find the values ofθi’s that maximizeln(L), we must takethe partial derivatives ofln(L)or with respect to eachθi,equate them to zero, and solve the equations forθi’s. Thissolution isˆΘ={ˆθ1,· · ·,ˆθm}, the mle.117
Chapter 6. Point EstimationSTAT 155ExampleSupposeX1,· · ·, Xnis a random sample from a Bernoulli distri-bution with parameterp. That is, eachXitakes the value 1 with probabilitypand the value 0 with probability1-p.Find the mle ofp.Is the mleunbiased?ExampleSupposeX1,· · ·, Xnis a random sample from a normal distri-bution with parametersμandσ.Find the mle’s ofμandσ2.Are theyunbiased?118
Chapter 6. Point EstimationSTAT 155Exercise 6.22LetXdenote the proportion of allotted time that a randomlyselected student spends working on a certain aptitude test. Suppose thepdf ofXisf(x;θ) =((θ+ 1)xθ0≤x≤10otherwisewhere-1< θ. A random sample of ten students yields datax1=.92, x2=.79, x3=.90, x4=.65, x5=.86, x6=.47, x7=.73, x8=.97, x9=.94, andx10=.77.