100%(1)1 out of 1 people found this document helpful
This preview shows page 33 - 40 out of 52 pages.
price discrimination (Figure 14.4),market outcome is e¢ cient!Third-degree price discrimination:price depends on the identity but not on quantity.Separate the market into di/erent segments.Example 14.5:p1=24²q1andp2=12²0.5q2,MC=6.max[(24²q1)q1+ (12²0.5q2)q2]²6(q1+q2).Second-degree price discrimination:price depends on quantity but not on the identity.Q. Wen(UW)Econ 400University of Washington33 / 52
Chapter 15 Imperfect CompetitionMany ±rms, compete in either price or quantity,simultaneously or sequentially.Bertrand model: simultaneous price-setting/price-competition game.Two ±rms, 1 and 2, each has a constant MCc>0.Products of the two ±rms arehomogenous/identical.Firmichooses pricepi³0, fori=1 and 2.Market demand function:q=a²bp.Because ofhomogenous products, ±rm 1°s pro±t is not continuous:π1(p1,p2) =8><>:(a²bp1) (p1²c)ifp1<p2,12(a²bp1) (p1²c)ifp1=p2,0ifp1>p2.Q. Wen(UW)Econ 400University of Washington34 / 52
Chapter 15 Imperfect CompetitionBertrand model: simultaneous price-setting game.Firm 2°s pro±t function is not continuous as well:π2(p1,p2) =8><>:(a²bp2) (p2²c)ifp2<p1,12(a²bp2) (p2²c)ifp2=p1,0ifp2>p1.Because discontinuous payo/ functions,a ±rm does not always have abest response.However, ifp2=c, then anyp1³cis a best response of ±rm 1.There is a Nash equilibrium wherep1=p2=c,which is the same as the competitive equilibrium outcome.Problem 15.4:Bertrand model with productdi/erentiation.Demand for ±rm 1°s product isq1=1²p1+bp2withb<2,For simplicity, assume production cost is 0.Q. Wen(UW)Econ 400University of Washington35 / 52
Chapter 15 Imperfect CompetitionExample 15.5Hotelling°s Beach ModelHorizontal product di/erentiationConsumers are distributed uniformly on[0,2].Two ±rms, ±rmAis located at 0 and ±rmBis located at 2.A consumer°s transportation cost is14°(distance)2.Consumerxis indi/erence to buy from ±rmAor ±rmBifpA+14x2|{z}cost to buy fromA=pB+14(2²x)2|{z}cost to buy fromBSee Figure 15.5Solvex=1+pB²pA.Q. Wen(UW)Econ 400University of Washington36 / 52
Chapter 15 Imperfect CompetitionExample 15.5Hotelling°s Beach ModelDemand function for ±rmA:qA(pA,pB) =x=1²pA+pB.Demand function for ±rmB:qB(pA,pB) =2²x=1+pA²pB.If two ±rms chooses prices simultaneously (Bertrand competition)maxpA(1²pA+pB)pAmaxpB(1+pA²pB)pBBRA(pB) =1+pB2BRB(pA) =1+pA2Nash equilibrium:p±A=p±B=1.Firms°pro±t:π±A=π±B= (1²1+1)°1=1.Q. Wen(UW)Econ 400University of Washington37 / 52
Chapter 15 Imperfect CompetitionCournot model:simultaneous quantity-setting gameThere are 2 ±rms, each has a constant MCc³0.Denote ±rmi°s quantity output byqi³0.Let theinversemarket demand function bep=a²bQ=a²b(q1+q2).Firmi°s pro±t/payo/ function isπi(qi,qj) = [a²b(q1+q2)]qi²cqi,which is continuous.To ±nd ±rmi°s best response function,maxqi[a²b(q1+q2)]qi²cqi.Find ±rmi°s best response function:BRi(qj) =a²c2b²12qj.Q. Wen(UW)Econ 400University of Washington38 / 52