4040Supplementary Exercise on Equations of Straight Lines (Optional)1.It is given that thex-intercept andy-intercept of straight lineLare 1 and 2 respectively.(a)Find the equation ofL.[2x+y– 1 = 0](b)Doeslie onL?[Yes]2.In the figure, straight linesL1:y= 2x+kandL2intersect atP(1,3(a)Find the value ofk.k).[1](b)If thex-intercept ofL2is 5, find the equation ofL23.In the figure, straight linesL1andL2intersect atP(2k,2k– 1). It is given thatthe slope ofL2is 2.(a)Find the coordinates ofP.[(–2, –3)](b)Find the equation ofL2.[2x–y+ 1 = 0]4.In the figure, straight linesL1:x+y– 2b= 0 andL2:x= 3 intersect atA(a)Find the coordinates ofA.[(3, 3)](b)Find the equation of the straight line passing through the origin andA(a,b)..5.It is given that straight lineLpasses throughA(1, –5). If thex-intercept oftwice itsy-intercept, find the equation ofL.[x+ 2y+ 9 = 0]Lis6.Two pointsA(–5, 4) andB(–2, –2) are given.Cis a point onABproduced such thatAB:BC(a)Find the coordinates ofC.[(0, –6)](b)Find the equation of the straight line with the slope of 2 passing throughC= 3: 2..7.It is given that straight lineL:kx+ (2k– 3)y+ 4 = 0 passes throughP(2, –8) and cuts thex-axis andaxis atAandBrespectively.(a)Find the value ofk.y-[2](b)Find the area of ΔOAB.[4 sq. units]8.In the figure, straight lineL1: 3x– 2y+ 24 = 0 cuts thex-axis andy-axis atAandBrespectively. Straight lineL2is the perpendicular bisector of linesegmentABand cuts thex-axis andy-axis atCandDrespectively.(a)Find the coordinates ofAand(b)Find the equation ofL2.[2x+ 3y– 10 = 0]B.(c)Find the area ofODMA.[sq. units]9235yk13)0yOxL2L1: 3x-2y+24=0MADCB