100%(1)1 out of 1 people found this document helpful
This preview shows page 5 - 7 out of 12 pages.
cq+b=cqV2(ǫ−ǫ0q+b)+O(V2),cq+b=cqV2(ǫ0q−ǫ0q+b)+O(V2),=−cqV2ma4πplanckover2pi12(q+πa)+O(V2);∴cq+b=cqV24planckover2pi12(q2−π2a2)parenleftBig1−qaπparenrightBig+O(V2).(1.b.18)The story changes, however, forcq−b. It is not hard to jump a bit in the calculation andseecq−b=cqV2(ǫ−ǫ0q−b)+O(V2).(1.b.19)Now, from our calculation of the eigenenergies at the Bragg plane we know thatǫπ/a−ǫ0π/a−b=±V2−V2ma16πplanckover2pi12(q+πa)+O(V3),(1.b.20)so we seecq−b=cqV2parenleftbigg±V2−V2ma16πplanckover2pi12(q+πa)parenrightbigg+O(V2),=cq1±parenleftbigg1∓V2ma8πplanckover2pi12(q+πa)parenrightbigg+O(V2),∴cq−b=±cqparenleftBigg1 +Vm8planckover2pi12(q2−π2a2)parenleftBigqaπ−1parenrightBigparenrightBigg+O(V2).(1.b.21)Putting all this together, we seeψ±q=πa(r) =cqeiqrbraceleftBigg1±e−ibr+Vm4planckover2pi12(q2−π2a2)parenleftBig1−aqπparenrightBigparenleftbiggeibr∓e−ibr2parenrightbiggbracerightBigg,so thatψ+(r)∝cqeiqrbraceleftBigg2e−ibr2cosparenleftBigπraparenrightBig+iVm2planckover2pi12(q2−π2a2)parenleftBig1−aqπparenrightBigbracketleftbiggsinparenleftbigg2πraparenrightbigg−ie−ibr4bracketrightbiggbracerightBigg;(1.b.22)andψ−(r)∝cqeiqrbraceleftBigg2ie−ibr2sinparenleftBigπraparenrightBig+Vm2planckover2pi12(q2−π2a2)parenleftBig1−aqπparenrightBigbracketleftbiggcosparenleftbigg2πraparenrightbigg−e−ibr4bracketrightbiggbracerightBigg.(1.b.23)‘´oπǫρ’´ǫδǫιπoιtieaccentlowercaseησαι
6JACOB LEWIS BOURJAILY-0.4-0.200.20.4-0.4-0.200.20.4-2-10120 4Figure 2.The first Brillouin zone dispersion for a tight-binding model on a two-dimensional square lattice.Problem 2: Tight-Binding Model on a Square LatticeConsider a tight-binding model on a square, two-dimensional square lattice (lattice spacinga) withon-site energyǫ0and nearest-neighbour hopping matrix elementt:H=summationdisplayrbraceleftBigǫ0|r)(r|+tbracketleftBig|r)(r+aˆx|+|r)(r−aˆx|+|r)(r+aˆy|+|r)(r−aˆy|bracketrightBigbracerightBig.a)We are to obtain the dispersion relation for this model.Just for the sake of clearing up notation, our Bravais lattice here will be generated byvectora1=a(1,0) andvectora2=a(0,1) which has the associated reciprocal lattice generated byvectorb1=2πa(1,0) andvectorb2=2πa(0,1). We will write all momenta in terms of the reciprocallattice, sovectorq=q1vectorb1+q2vectorb2.Using Bloch’s theorem it is quite easy to see that theHamiltonian of this system is given byHψ=braceleftbigǫ0+t(eivectorq·vectora1+e−ivectorq·vectora1+eivectorq·vectora2+e−ivectorq·vectora2)bracerightbigψ,(2.a.1)=braceleftbigǫ0+t(ei2πq1+e−i2πq1+ei2πq2+e−i2πq2)bracerightbigψ,(2.a.2)=braceleftbigǫ0+ 2t
You've reached the end of your free preview.
Want to read all 12 pages?
Fall '06
JacobBourjaily
Physics,
Work, Condensed matter physics, Reciprocal lattice, Brillouin zone, Jacob Lewis Bourjaily, ´δǫι πoιη σαι