El objetivo de utilizar el diseño de bloques al azar

Info icon This preview shows pages 24–33. Sign up to view the full content.

View Full Document Right Arrow Icon
El objetivo de utilizar el diseño de bloques al azar es aislar y eliminar del término de error lo que se les atribuye a los bloques y asegurar que las medias del tratamiento estén libres de los efectos del bloque. La eficacia del diseño depende de la capacidad de conseguir bloques homogéneos de unidades de experimentación. En experimentos con animales, si se consideran las diferentes cepas de animales, responderían de manera diferente a un mismo tratamiento, la cepa se puede utilizar como un factor para formar bloques. Las camadas también pueden utilizarse como bloques, en donde un animal de cada camada recibe un tratamiento. Una de las ventajas de utilizar un diseño de bloques al azar es que se comprenden fácilmente, además, si surgen algunas complicaciones en el transcurso del experimento son fáciles de controlar con este diseño. 10.2 Análisis de varianza de un diseño de bloques al azar Para llevar a cabo el análisis de varianza, se lleva a cabo el siguiente:
Image of page 24

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Se forma el cuadro de análisis de varianza Finalmente, se realiza la prueba de hipótesis:
Image of page 25
Ejemplo: Un psicólogo clínico quiso comparar tres métodos para reducir los niveles de hostilidad en alumnos universitarios por medio de una prueba psicológica (HLT). Las calificaciones altas en esta prueba significarían gran hostilidad. En el experimento participaron 16 alumnos que obtuvieron calificaciones altas y casi iguales de diferentes semestres (I, II, III); el psicólogo consideró que era natural considerar los semestres como bloques. En el semestre I eligió 4 estudiantes y a cada uno les asignó aleatoriamente un método (tratamiento) para reducir la hostilidad. En el resto de los semestres (bloques) realizó algo similar. Los tratamientos duraron todo el semestre y al final aplicó de nuevo la prueba HLT. Los resultados se presentan a continuación:
Image of page 26

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
¿Los datos proporcionan evidencia suficiente para indicar una diferencia en la respuesta promedio del alumno a los cuatro métodos después del tratamiento? Solución Los datos anteriores se arreglan convenientemente como la siguiente tabla:
Image of page 27
Se forma el Cuadro de ANVA
Image of page 28

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Prueba de la hipótesis 10.3 Comparaciones múltiples Después del ANVA se realiza una prueba para determinar cuáles son los tratamientos que difieren entre sí. El procedimiento es el siguiente: Valor crítico w
Image of page 29
Donde: gl error = grados de libertad del error b = número de bloques por tratamiento α= nivel de significancia Si el valor crítico w es menor que cualquier par de medias de tratamientos, se tiene evidencia de que existe diferencia entre este par de tratamientos. En el presente ejemplo:
Image of page 30

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Glosario Cierre A través del estudio del tema aprendiste sobre el análisis de varianza de un diseño de bloques al azar. En este diseño las unidades experimentales en las que se aplican los tratamientos se subdividen en grupos homogéneos denominados bloques, de tal manera que el número de unidades experimentales en un bloque es igual al número (o a un múltiplo) de tratamientos en estudio. Posteriormente se asignan los tratamientos al azar a las unidades experimentales dentro de cada bloque.
Image of page 31
Tema 11. Experimentos factoriales
Image of page 32

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 33
This is the end of the preview. Sign up to access the rest of the document.
  • Spring '16
  • Andy Anderson
  • Experimento, Variable aleatoria, Observación, Distribución t de Student, Distribución F, Análisis de la varianza

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern