B theorem 24 page 34 proofs were also done in class

Info icon This preview shows page 4. Sign up to view the full content.

View Full Document Right Arrow Icon
(b): Theorem 2.4, page 34. Proofs were also done in class. These varied somewhat from those of the text. _________________________________________________________________ 9. (10 pts.) (a) Suppose G is a bipartite graph of order at least 5. Prove that the complement of G is not bipartite. [Hint: At least one partite set has three elements. Connect the dots?] Suppose that G is a bipartite graph of order at least 5 with partite sets U and W. At least one of U and W has at least 3 elements. Suppose without loss of generality, W 3. Label three of the members of W with u,v, and w. Since these vertices are in the same partite set of G, none of these three vertices is adjacent to any other of the three. Thus, uv , vw , uw E ( G ) G contains a 3 cycle . Thus, the complement of G is not bipartite. [Problem 1.25?] (b) Display a bipartite graph G of order 4 and its bipartite complement. Label each appropriately and give partite sets for each bipartite graph. //There are a multitude of examples. See me if you need help with this! This reveals why we want V(G) 5 in (a).
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern