102Chapter 5: Multivariate Probability DistributionsInstructor’s Solutions Manual5.47Dependent.For example:P(Y1= 1,Y2= 2)≠P(Y1= 1)P(Y2= 2).5.48Dependent.For example:P(Y1= 0,Y2= 0)≠P(Y1= 0)P(Y2= 0).5.49Note that10,33)(121021111≤≤==∫yydyyyfy,10],1[3)(22223111221≤≤−==∫yydyyyfy.Thus,)()(),(221121yfyfyyf≠so thatY1andY2are dependent.5.50a.Note that10,11)(110211≤≤==∫ydyyfand10,11)(210122≤≤==∫ydyyf.Thus,)()(),(221121yfyfyyf=so thatY1andY2are independent.b.Yes, the conditional probabilities are the same as the marginal probabilities.5.51a.Note that0,)(102)(11121>==−∞+−∫yedyeyfyyyand0,)(201)(22221>==−∞+−∫yedyeyfyyy.Thus,)()(),(221121yfyfyyf=so thatY1andY2are independent.b.Yes, the conditional probabilities are the same as the marginal probabilities.5.52Note that),(21yyfcan be factored and the ranges ofy1andy2do not depend on eachother so by Theorem 5.5Y1andY2are independent.5.53The ranges ofy1andy2depend on each other soY1andY2cannot be independent.5.54The ranges ofy1andy2depend on each other soY1andY2cannot be independent.5.55The ranges ofy1andy2depend on each other soY1andY2cannot be independent.5.56The ranges ofy1andy2depend on each other soY1andY2cannot be independent.5.57The ranges ofy1andy2depend on each other soY1andY2cannot be independent.5.58Following Ex. 5.32, it is seen that)()(),(221121yfyfyyf≠so thatY1andY2aredependent.5.59The ranges ofy1andy2depend on each other soY1andY2cannot be independent.5.60From Ex. 5.36,21111)(+=yyf, 0≤y1≤1, and21222)(+=yyf, 0≤y2≤1.But,)()(),(221121yfyfyyf≠soY1andY2are dependent.5.61Note that),(21yyfcan be factored and the ranges ofy1andy2do not depend on eachother so by Theorem 5.5,Y1andY2are independent.