Determining actual temperature lapse rates from your

This preview shows page 7 - 8 out of 8 pages.

Determining actual temperature lapse rates from your own temperature readings is not difficult. Simply divide the temperature difference by the elevation difference expressed in 1,000's of feet. Usually you will have a minus lapse rate, i.e., where temperature decreases with altitude increase. However, under inversion conditions, you may have a plus lapse rate where temperature increases with altitude increase. When you have determined a temperature lapse rate for your situation, check the condition of stability or instability as described on page 4 of this unit. We want you to practice determining atmospheric stability and instability from temperature distribution data. On page 17, exercise 2 is intended for that purpose. Please complete the exercise; then restart the tape. (BEEP) We have provided several examples of inversion conditions. How do these affect fire control efforts? Please do question 7 on page 18.
Image of page 7

Subscribe to view the full document.

In question 7, you should have marked statement 3. All are generally true statements about surface inversions. However, major problems can occur when the inversion breaks and unstable air conditions develop. This is not necessarily a gradual process, with adequate warning, but substantial weather changes can occur in a matter of minutes. To be surprised by an inversion breakup can present serious safety and control problems. One way to keep advised of inversion breakups and subsequent weather changes is to monitor the weather. Adequate weather monitoring requires constant or frequent observations of weather elements to detect changing conditions that could influence the behavior of a fire. Weather monitoring will be discussed more in Unit 8. Now move on to question 8 on page 18; mark you choices. In question 8, you should have marked choices 1, 3, 5, and 6. The other two are indicators of a stable atmosphere. Smoke columns are one of the better visual indicators of atmospheric stability or instability. Exercise 3 presents several atmospheric situations that you could encounter on a fire. Complete this exercise; then return to the text. This unit has presented basic information to help you determine atmospheric stability and instability and to understand the effects that various atmospheric conditions can have on fire behavior. We recognize the atmosphere as a very dynamic system with a number of physical processes interacting to produce our weather. The degree of stability or instability is perhaps the least understood. We have included a supplemental summary on pages 20 and 21 which may help your understanding of this complex process. Please read the summary; then prepare for the unit test.
Image of page 8
You've reached the end of this preview.
  • Spring '04
  • MIchealJenkins
  • Cumulus cloud, lapse rate, 3°, cumulus, 1,000, solarradiation

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern