c3-t1-a

# The parameter value t for the point of intersection

This preview shows pages 1–4. Sign up to view the full content.

The parameter value t for the point of intersection satisfies the equation Substituting this into the equation for the line reveals that the point has coordinates ( x , y , z ) = (5/3,7/3,7/3)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
TEST1/MAC2313 Page 2 of 5 ______________________________________________________________________ 5. (5 pts.) What point (x 0 ,y 0 ) is four-fifths of the way from P = (-2,-3) to Q = (48,7) ?? The vector v with initial point P and terminal point Q has coordinates <50,10> in standard position. Consequently, the terminal point of <x 0 ,y 0 > = <-2,-3> + (4/5)<50,10> = <38,8> in standard position provides us with the coordinates for (x 0 ,y 0 ). Vector magic!! ______________________________________________________________________ 6. (5 pts.) Suppose v = <-3,-2, 1> and w = <-1,1,1>. Then v w = (-3)(-1) + (-2)(1) + (1)(1) = 3 - 2 + 1 = 2 ______________________________________________________________________ 7. (5 pts.) Suppose v = <-3,-2, 1> and w = <-1,1,1>. Then v × w = < -3, -(2), -5 > = < -3, 2, -5 > ______________________________________________________________________ 8. (5 pts.) Suppose v = <-3,-2, 1> and w = <-1,1,1>. Then proj w ( v ) = < -2/3, 2/3, 2/3 > , and the component of v perpendicular to w is w 2 = < -7/3, -8/3, 1/3 > . ______________________________________________________________________ The yz-plane part of Problem 20. (5 pts.) Do the three 2-space sketches of the traces in each of the coordinate planes of the surface defined by . z 1 x 2 9 y 2 4
TEST1/MAC2313 Page 3 of 5 ______________________________________________________________________ 9. (5 pts.) Suppose v = <-3,-4, 5> and w = <-1,1,1>. If α , β , and γ are the direction angles of v , then cos( α ) = , cos( β ) = ,and cos( γ ) = . ______________________________________________________________________ 10. (5 pts.) Suppose v = <-3,-2, 1> and w = <-1,1,1>. What is the exact value of the angle θ between v and w ?? ______________________________________________________________________ 11. (5 pts.) Write a point-normal equation for the plane perpendicular to v = <-3,-2,1> and containing the point (-1,2,-3). -3(x - (-1)) - 2(y - 2) + (z - (-3)) =

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 5

The parameter value t for the point of intersection...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online